Mathbox for ML < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  icoreelrnab Structured version   Visualization version   GIF version

Theorem icoreelrnab 33332
 Description: Elementhood in the set of closed-below, open-above intervals of reals. (Contributed by ML, 27-Jul-2020.)
Hypothesis
Ref Expression
icoreelrnab.1 𝐼 = ([,) “ (ℝ × ℝ))
Assertion
Ref Expression
icoreelrnab (𝑋𝐼 ↔ ∃𝑎 ∈ ℝ ∃𝑏 ∈ ℝ 𝑋 = {𝑧 ∈ ℝ ∣ (𝑎𝑧𝑧 < 𝑏)})
Distinct variable groups:   𝑋,𝑎,𝑏   𝑧,𝑎,𝑏
Allowed substitution hints:   𝐼(𝑧,𝑎,𝑏)   𝑋(𝑧)

Proof of Theorem icoreelrnab
StepHypRef Expression
1 icoreelrnab.1 . . . . . 6 𝐼 = ([,) “ (ℝ × ℝ))
2 df-ima 5156 . . . . . 6 ([,) “ (ℝ × ℝ)) = ran ([,) ↾ (ℝ × ℝ))
31, 2eqtri 2673 . . . . 5 𝐼 = ran ([,) ↾ (ℝ × ℝ))
43eleq2i 2722 . . . 4 (𝑋𝐼𝑋 ∈ ran ([,) ↾ (ℝ × ℝ)))
5 icoreresf 33330 . . . . 5 ([,) ↾ (ℝ × ℝ)):(ℝ × ℝ)⟶𝒫 ℝ
6 ffn 6083 . . . . 5 (([,) ↾ (ℝ × ℝ)):(ℝ × ℝ)⟶𝒫 ℝ → ([,) ↾ (ℝ × ℝ)) Fn (ℝ × ℝ))
7 ovelrn 6852 . . . . 5 (([,) ↾ (ℝ × ℝ)) Fn (ℝ × ℝ) → (𝑋 ∈ ran ([,) ↾ (ℝ × ℝ)) ↔ ∃𝑎 ∈ ℝ ∃𝑏 ∈ ℝ 𝑋 = (𝑎([,) ↾ (ℝ × ℝ))𝑏)))
85, 6, 7mp2b 10 . . . 4 (𝑋 ∈ ran ([,) ↾ (ℝ × ℝ)) ↔ ∃𝑎 ∈ ℝ ∃𝑏 ∈ ℝ 𝑋 = (𝑎([,) ↾ (ℝ × ℝ))𝑏))
94, 8bitri 264 . . 3 (𝑋𝐼 ↔ ∃𝑎 ∈ ℝ ∃𝑏 ∈ ℝ 𝑋 = (𝑎([,) ↾ (ℝ × ℝ))𝑏))
10 ovres 6842 . . . . 5 ((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) → (𝑎([,) ↾ (ℝ × ℝ))𝑏) = (𝑎[,)𝑏))
1110eqeq2d 2661 . . . 4 ((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) → (𝑋 = (𝑎([,) ↾ (ℝ × ℝ))𝑏) ↔ 𝑋 = (𝑎[,)𝑏)))
12112rexbiia 3084 . . 3 (∃𝑎 ∈ ℝ ∃𝑏 ∈ ℝ 𝑋 = (𝑎([,) ↾ (ℝ × ℝ))𝑏) ↔ ∃𝑎 ∈ ℝ ∃𝑏 ∈ ℝ 𝑋 = (𝑎[,)𝑏))
139, 12bitri 264 . 2 (𝑋𝐼 ↔ ∃𝑎 ∈ ℝ ∃𝑏 ∈ ℝ 𝑋 = (𝑎[,)𝑏))
14 icoreval 33331 . . . 4 ((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) → (𝑎[,)𝑏) = {𝑧 ∈ ℝ ∣ (𝑎𝑧𝑧 < 𝑏)})
1514eqeq2d 2661 . . 3 ((𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ) → (𝑋 = (𝑎[,)𝑏) ↔ 𝑋 = {𝑧 ∈ ℝ ∣ (𝑎𝑧𝑧 < 𝑏)}))
16152rexbiia 3084 . 2 (∃𝑎 ∈ ℝ ∃𝑏 ∈ ℝ 𝑋 = (𝑎[,)𝑏) ↔ ∃𝑎 ∈ ℝ ∃𝑏 ∈ ℝ 𝑋 = {𝑧 ∈ ℝ ∣ (𝑎𝑧𝑧 < 𝑏)})
1713, 16bitri 264 1 (𝑋𝐼 ↔ ∃𝑎 ∈ ℝ ∃𝑏 ∈ ℝ 𝑋 = {𝑧 ∈ ℝ ∣ (𝑎𝑧𝑧 < 𝑏)})
 Colors of variables: wff setvar class Syntax hints:   ↔ wb 196   ∧ wa 383   = wceq 1523   ∈ wcel 2030  ∃wrex 2942  {crab 2945  𝒫 cpw 4191   class class class wbr 4685   × cxp 5141  ran crn 5144   ↾ cres 5145   “ cima 5146   Fn wfn 5921  ⟶wf 5922  (class class class)co 6690  ℝcr 9973   < clt 10112   ≤ cle 10113  [,)cico 12215 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-pre-lttri 10048  ax-pre-lttrn 10049 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-op 4217  df-uni 4469  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-id 5053  df-po 5064  df-so 5065  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-1st 7210  df-2nd 7211  df-er 7787  df-en 7998  df-dom 7999  df-sdom 8000  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-ico 12219 This theorem is referenced by:  isbasisrelowllem1  33333  isbasisrelowllem2  33334  icoreclin  33335
 Copyright terms: Public domain W3C validator