Users' Mathboxes Mathbox for ML < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  icoreelrn Structured version   Visualization version   GIF version

Theorem icoreelrn 33339
Description: A class abstraction which is an element of the set of closed-below, open-above intervals of reals. (Contributed by ML, 1-Aug-2020.)
Hypothesis
Ref Expression
icoreelrn.1 𝐼 = ([,) “ (ℝ × ℝ))
Assertion
Ref Expression
icoreelrn ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → {𝑧 ∈ ℝ ∣ (𝐴𝑧𝑧 < 𝐵)} ∈ 𝐼)
Distinct variable groups:   𝑧,𝐴   𝑧,𝐵
Allowed substitution hint:   𝐼(𝑧)

Proof of Theorem icoreelrn
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 icoreval 33331 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,)𝐵) = {𝑧 ∈ ℝ ∣ (𝐴𝑧𝑧 < 𝐵)})
2 simpl 472 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐴 ∈ ℝ)
3 simpr 476 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐵 ∈ ℝ)
4 df-ico 12219 . . . . . 6 [,) = (𝑎 ∈ ℝ*, 𝑏 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑎𝑧𝑧 < 𝑏)})
54ixxf 12223 . . . . 5 [,):(ℝ* × ℝ*)⟶𝒫 ℝ*
6 ffun 6086 . . . . 5 ([,):(ℝ* × ℝ*)⟶𝒫 ℝ* → Fun [,))
75, 6mp1i 13 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → Fun [,))
8 rexpssxrxp 10122 . . . . . 6 (ℝ × ℝ) ⊆ (ℝ* × ℝ*)
95fdmi 6090 . . . . . 6 dom [,) = (ℝ* × ℝ*)
108, 9sseqtr4i 3671 . . . . 5 (ℝ × ℝ) ⊆ dom [,)
1110a1i 11 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (ℝ × ℝ) ⊆ dom [,))
122, 3, 7, 11elovimad 6733 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,)𝐵) ∈ ([,) “ (ℝ × ℝ)))
13 icoreelrn.1 . . 3 𝐼 = ([,) “ (ℝ × ℝ))
1412, 13syl6eleqr 2741 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,)𝐵) ∈ 𝐼)
151, 14eqeltrrd 2731 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → {𝑧 ∈ ℝ ∣ (𝐴𝑧𝑧 < 𝐵)} ∈ 𝐼)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1523  wcel 2030  {crab 2945  wss 3607  𝒫 cpw 4191   class class class wbr 4685   × cxp 5141  dom cdm 5143  cima 5146  Fun wfun 5920  wf 5922  (class class class)co 6690  cr 9973  *cxr 10111   < clt 10112  cle 10113  [,)cico 12215
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-pre-lttri 10048  ax-pre-lttrn 10049
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-op 4217  df-uni 4469  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-id 5053  df-po 5064  df-so 5065  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-1st 7210  df-2nd 7211  df-er 7787  df-en 7998  df-dom 7999  df-sdom 8000  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-ico 12219
This theorem is referenced by:  relowlssretop  33341
  Copyright terms: Public domain W3C validator