MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  icopnfcnv Structured version   Visualization version   GIF version

Theorem icopnfcnv 22788
Description: Define a bijection from [0, 1) to [0, +∞). (Contributed by Mario Carneiro, 9-Sep-2015.)
Hypothesis
Ref Expression
icopnfhmeo.f 𝐹 = (𝑥 ∈ (0[,)1) ↦ (𝑥 / (1 − 𝑥)))
Assertion
Ref Expression
icopnfcnv (𝐹:(0[,)1)–1-1-onto→(0[,)+∞) ∧ 𝐹 = (𝑦 ∈ (0[,)+∞) ↦ (𝑦 / (1 + 𝑦))))
Distinct variable groups:   𝑥,𝑦   𝑦,𝐹
Allowed substitution hint:   𝐹(𝑥)

Proof of Theorem icopnfcnv
StepHypRef Expression
1 icopnfhmeo.f . . 3 𝐹 = (𝑥 ∈ (0[,)1) ↦ (𝑥 / (1 − 𝑥)))
2 0re 10078 . . . . . . . 8 0 ∈ ℝ
3 1re 10077 . . . . . . . . 9 1 ∈ ℝ
43rexri 10135 . . . . . . . 8 1 ∈ ℝ*
5 elico2 12275 . . . . . . . 8 ((0 ∈ ℝ ∧ 1 ∈ ℝ*) → (𝑥 ∈ (0[,)1) ↔ (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥𝑥 < 1)))
62, 4, 5mp2an 708 . . . . . . 7 (𝑥 ∈ (0[,)1) ↔ (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥𝑥 < 1))
76simp1bi 1096 . . . . . 6 (𝑥 ∈ (0[,)1) → 𝑥 ∈ ℝ)
86simp3bi 1098 . . . . . . 7 (𝑥 ∈ (0[,)1) → 𝑥 < 1)
9 difrp 11906 . . . . . . . 8 ((𝑥 ∈ ℝ ∧ 1 ∈ ℝ) → (𝑥 < 1 ↔ (1 − 𝑥) ∈ ℝ+))
107, 3, 9sylancl 695 . . . . . . 7 (𝑥 ∈ (0[,)1) → (𝑥 < 1 ↔ (1 − 𝑥) ∈ ℝ+))
118, 10mpbid 222 . . . . . 6 (𝑥 ∈ (0[,)1) → (1 − 𝑥) ∈ ℝ+)
127, 11rerpdivcld 11941 . . . . 5 (𝑥 ∈ (0[,)1) → (𝑥 / (1 − 𝑥)) ∈ ℝ)
136simp2bi 1097 . . . . . 6 (𝑥 ∈ (0[,)1) → 0 ≤ 𝑥)
147, 11, 13divge0d 11950 . . . . 5 (𝑥 ∈ (0[,)1) → 0 ≤ (𝑥 / (1 − 𝑥)))
15 elrege0 12316 . . . . 5 ((𝑥 / (1 − 𝑥)) ∈ (0[,)+∞) ↔ ((𝑥 / (1 − 𝑥)) ∈ ℝ ∧ 0 ≤ (𝑥 / (1 − 𝑥))))
1612, 14, 15sylanbrc 699 . . . 4 (𝑥 ∈ (0[,)1) → (𝑥 / (1 − 𝑥)) ∈ (0[,)+∞))
1716adantl 481 . . 3 ((⊤ ∧ 𝑥 ∈ (0[,)1)) → (𝑥 / (1 − 𝑥)) ∈ (0[,)+∞))
18 elrege0 12316 . . . . . . 7 (𝑦 ∈ (0[,)+∞) ↔ (𝑦 ∈ ℝ ∧ 0 ≤ 𝑦))
1918simplbi 475 . . . . . 6 (𝑦 ∈ (0[,)+∞) → 𝑦 ∈ ℝ)
20 readdcl 10057 . . . . . . . 8 ((1 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (1 + 𝑦) ∈ ℝ)
213, 19, 20sylancr 696 . . . . . . 7 (𝑦 ∈ (0[,)+∞) → (1 + 𝑦) ∈ ℝ)
222a1i 11 . . . . . . . 8 (𝑦 ∈ (0[,)+∞) → 0 ∈ ℝ)
2318simprbi 479 . . . . . . . 8 (𝑦 ∈ (0[,)+∞) → 0 ≤ 𝑦)
2419ltp1d 10992 . . . . . . . . 9 (𝑦 ∈ (0[,)+∞) → 𝑦 < (𝑦 + 1))
25 ax-1cn 10032 . . . . . . . . . 10 1 ∈ ℂ
2619recnd 10106 . . . . . . . . . 10 (𝑦 ∈ (0[,)+∞) → 𝑦 ∈ ℂ)
27 addcom 10260 . . . . . . . . . 10 ((1 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (1 + 𝑦) = (𝑦 + 1))
2825, 26, 27sylancr 696 . . . . . . . . 9 (𝑦 ∈ (0[,)+∞) → (1 + 𝑦) = (𝑦 + 1))
2924, 28breqtrrd 4713 . . . . . . . 8 (𝑦 ∈ (0[,)+∞) → 𝑦 < (1 + 𝑦))
3022, 19, 21, 23, 29lelttrd 10233 . . . . . . 7 (𝑦 ∈ (0[,)+∞) → 0 < (1 + 𝑦))
3121, 30elrpd 11907 . . . . . 6 (𝑦 ∈ (0[,)+∞) → (1 + 𝑦) ∈ ℝ+)
3219, 31rerpdivcld 11941 . . . . 5 (𝑦 ∈ (0[,)+∞) → (𝑦 / (1 + 𝑦)) ∈ ℝ)
33 divge0 10930 . . . . . 6 (((𝑦 ∈ ℝ ∧ 0 ≤ 𝑦) ∧ ((1 + 𝑦) ∈ ℝ ∧ 0 < (1 + 𝑦))) → 0 ≤ (𝑦 / (1 + 𝑦)))
3419, 23, 21, 30, 33syl22anc 1367 . . . . 5 (𝑦 ∈ (0[,)+∞) → 0 ≤ (𝑦 / (1 + 𝑦)))
3521recnd 10106 . . . . . . . 8 (𝑦 ∈ (0[,)+∞) → (1 + 𝑦) ∈ ℂ)
3635mulid1d 10095 . . . . . . 7 (𝑦 ∈ (0[,)+∞) → ((1 + 𝑦) · 1) = (1 + 𝑦))
3729, 36breqtrrd 4713 . . . . . 6 (𝑦 ∈ (0[,)+∞) → 𝑦 < ((1 + 𝑦) · 1))
383a1i 11 . . . . . . 7 (𝑦 ∈ (0[,)+∞) → 1 ∈ ℝ)
39 ltdivmul 10936 . . . . . . 7 ((𝑦 ∈ ℝ ∧ 1 ∈ ℝ ∧ ((1 + 𝑦) ∈ ℝ ∧ 0 < (1 + 𝑦))) → ((𝑦 / (1 + 𝑦)) < 1 ↔ 𝑦 < ((1 + 𝑦) · 1)))
4019, 38, 21, 30, 39syl112anc 1370 . . . . . 6 (𝑦 ∈ (0[,)+∞) → ((𝑦 / (1 + 𝑦)) < 1 ↔ 𝑦 < ((1 + 𝑦) · 1)))
4137, 40mpbird 247 . . . . 5 (𝑦 ∈ (0[,)+∞) → (𝑦 / (1 + 𝑦)) < 1)
42 elico2 12275 . . . . . 6 ((0 ∈ ℝ ∧ 1 ∈ ℝ*) → ((𝑦 / (1 + 𝑦)) ∈ (0[,)1) ↔ ((𝑦 / (1 + 𝑦)) ∈ ℝ ∧ 0 ≤ (𝑦 / (1 + 𝑦)) ∧ (𝑦 / (1 + 𝑦)) < 1)))
432, 4, 42mp2an 708 . . . . 5 ((𝑦 / (1 + 𝑦)) ∈ (0[,)1) ↔ ((𝑦 / (1 + 𝑦)) ∈ ℝ ∧ 0 ≤ (𝑦 / (1 + 𝑦)) ∧ (𝑦 / (1 + 𝑦)) < 1))
4432, 34, 41, 43syl3anbrc 1265 . . . 4 (𝑦 ∈ (0[,)+∞) → (𝑦 / (1 + 𝑦)) ∈ (0[,)1))
4544adantl 481 . . 3 ((⊤ ∧ 𝑦 ∈ (0[,)+∞)) → (𝑦 / (1 + 𝑦)) ∈ (0[,)1))
4626adantl 481 . . . . . . . . 9 ((𝑥 ∈ (0[,)1) ∧ 𝑦 ∈ (0[,)+∞)) → 𝑦 ∈ ℂ)
477adantr 480 . . . . . . . . . . 11 ((𝑥 ∈ (0[,)1) ∧ 𝑦 ∈ (0[,)+∞)) → 𝑥 ∈ ℝ)
4847recnd 10106 . . . . . . . . . 10 ((𝑥 ∈ (0[,)1) ∧ 𝑦 ∈ (0[,)+∞)) → 𝑥 ∈ ℂ)
4948, 46mulcld 10098 . . . . . . . . 9 ((𝑥 ∈ (0[,)1) ∧ 𝑦 ∈ (0[,)+∞)) → (𝑥 · 𝑦) ∈ ℂ)
5046, 49, 48subadd2d 10449 . . . . . . . 8 ((𝑥 ∈ (0[,)1) ∧ 𝑦 ∈ (0[,)+∞)) → ((𝑦 − (𝑥 · 𝑦)) = 𝑥 ↔ (𝑥 + (𝑥 · 𝑦)) = 𝑦))
51 1cnd 10094 . . . . . . . . . . 11 ((𝑥 ∈ (0[,)1) ∧ 𝑦 ∈ (0[,)+∞)) → 1 ∈ ℂ)
5251, 48, 46subdird 10525 . . . . . . . . . 10 ((𝑥 ∈ (0[,)1) ∧ 𝑦 ∈ (0[,)+∞)) → ((1 − 𝑥) · 𝑦) = ((1 · 𝑦) − (𝑥 · 𝑦)))
5346mulid2d 10096 . . . . . . . . . . 11 ((𝑥 ∈ (0[,)1) ∧ 𝑦 ∈ (0[,)+∞)) → (1 · 𝑦) = 𝑦)
5453oveq1d 6705 . . . . . . . . . 10 ((𝑥 ∈ (0[,)1) ∧ 𝑦 ∈ (0[,)+∞)) → ((1 · 𝑦) − (𝑥 · 𝑦)) = (𝑦 − (𝑥 · 𝑦)))
5552, 54eqtrd 2685 . . . . . . . . 9 ((𝑥 ∈ (0[,)1) ∧ 𝑦 ∈ (0[,)+∞)) → ((1 − 𝑥) · 𝑦) = (𝑦 − (𝑥 · 𝑦)))
5655eqeq1d 2653 . . . . . . . 8 ((𝑥 ∈ (0[,)1) ∧ 𝑦 ∈ (0[,)+∞)) → (((1 − 𝑥) · 𝑦) = 𝑥 ↔ (𝑦 − (𝑥 · 𝑦)) = 𝑥))
5748, 51, 46adddid 10102 . . . . . . . . . 10 ((𝑥 ∈ (0[,)1) ∧ 𝑦 ∈ (0[,)+∞)) → (𝑥 · (1 + 𝑦)) = ((𝑥 · 1) + (𝑥 · 𝑦)))
5848mulid1d 10095 . . . . . . . . . . 11 ((𝑥 ∈ (0[,)1) ∧ 𝑦 ∈ (0[,)+∞)) → (𝑥 · 1) = 𝑥)
5958oveq1d 6705 . . . . . . . . . 10 ((𝑥 ∈ (0[,)1) ∧ 𝑦 ∈ (0[,)+∞)) → ((𝑥 · 1) + (𝑥 · 𝑦)) = (𝑥 + (𝑥 · 𝑦)))
6057, 59eqtrd 2685 . . . . . . . . 9 ((𝑥 ∈ (0[,)1) ∧ 𝑦 ∈ (0[,)+∞)) → (𝑥 · (1 + 𝑦)) = (𝑥 + (𝑥 · 𝑦)))
6160eqeq1d 2653 . . . . . . . 8 ((𝑥 ∈ (0[,)1) ∧ 𝑦 ∈ (0[,)+∞)) → ((𝑥 · (1 + 𝑦)) = 𝑦 ↔ (𝑥 + (𝑥 · 𝑦)) = 𝑦))
6250, 56, 613bitr4rd 301 . . . . . . 7 ((𝑥 ∈ (0[,)1) ∧ 𝑦 ∈ (0[,)+∞)) → ((𝑥 · (1 + 𝑦)) = 𝑦 ↔ ((1 − 𝑥) · 𝑦) = 𝑥))
63 eqcom 2658 . . . . . . 7 (𝑦 = (𝑥 · (1 + 𝑦)) ↔ (𝑥 · (1 + 𝑦)) = 𝑦)
64 eqcom 2658 . . . . . . 7 (𝑥 = ((1 − 𝑥) · 𝑦) ↔ ((1 − 𝑥) · 𝑦) = 𝑥)
6562, 63, 643bitr4g 303 . . . . . 6 ((𝑥 ∈ (0[,)1) ∧ 𝑦 ∈ (0[,)+∞)) → (𝑦 = (𝑥 · (1 + 𝑦)) ↔ 𝑥 = ((1 − 𝑥) · 𝑦)))
6635adantl 481 . . . . . . 7 ((𝑥 ∈ (0[,)1) ∧ 𝑦 ∈ (0[,)+∞)) → (1 + 𝑦) ∈ ℂ)
6731adantl 481 . . . . . . . 8 ((𝑥 ∈ (0[,)1) ∧ 𝑦 ∈ (0[,)+∞)) → (1 + 𝑦) ∈ ℝ+)
6867rpne0d 11915 . . . . . . 7 ((𝑥 ∈ (0[,)1) ∧ 𝑦 ∈ (0[,)+∞)) → (1 + 𝑦) ≠ 0)
6946, 48, 66, 68divmul3d 10873 . . . . . 6 ((𝑥 ∈ (0[,)1) ∧ 𝑦 ∈ (0[,)+∞)) → ((𝑦 / (1 + 𝑦)) = 𝑥𝑦 = (𝑥 · (1 + 𝑦))))
7011adantr 480 . . . . . . . 8 ((𝑥 ∈ (0[,)1) ∧ 𝑦 ∈ (0[,)+∞)) → (1 − 𝑥) ∈ ℝ+)
7170rpcnd 11912 . . . . . . 7 ((𝑥 ∈ (0[,)1) ∧ 𝑦 ∈ (0[,)+∞)) → (1 − 𝑥) ∈ ℂ)
7270rpne0d 11915 . . . . . . 7 ((𝑥 ∈ (0[,)1) ∧ 𝑦 ∈ (0[,)+∞)) → (1 − 𝑥) ≠ 0)
7348, 46, 71, 72divmul2d 10872 . . . . . 6 ((𝑥 ∈ (0[,)1) ∧ 𝑦 ∈ (0[,)+∞)) → ((𝑥 / (1 − 𝑥)) = 𝑦𝑥 = ((1 − 𝑥) · 𝑦)))
7465, 69, 733bitr4d 300 . . . . 5 ((𝑥 ∈ (0[,)1) ∧ 𝑦 ∈ (0[,)+∞)) → ((𝑦 / (1 + 𝑦)) = 𝑥 ↔ (𝑥 / (1 − 𝑥)) = 𝑦))
75 eqcom 2658 . . . . 5 (𝑥 = (𝑦 / (1 + 𝑦)) ↔ (𝑦 / (1 + 𝑦)) = 𝑥)
76 eqcom 2658 . . . . 5 (𝑦 = (𝑥 / (1 − 𝑥)) ↔ (𝑥 / (1 − 𝑥)) = 𝑦)
7774, 75, 763bitr4g 303 . . . 4 ((𝑥 ∈ (0[,)1) ∧ 𝑦 ∈ (0[,)+∞)) → (𝑥 = (𝑦 / (1 + 𝑦)) ↔ 𝑦 = (𝑥 / (1 − 𝑥))))
7877adantl 481 . . 3 ((⊤ ∧ (𝑥 ∈ (0[,)1) ∧ 𝑦 ∈ (0[,)+∞))) → (𝑥 = (𝑦 / (1 + 𝑦)) ↔ 𝑦 = (𝑥 / (1 − 𝑥))))
791, 17, 45, 78f1ocnv2d 6928 . 2 (⊤ → (𝐹:(0[,)1)–1-1-onto→(0[,)+∞) ∧ 𝐹 = (𝑦 ∈ (0[,)+∞) ↦ (𝑦 / (1 + 𝑦)))))
8079trud 1533 1 (𝐹:(0[,)1)–1-1-onto→(0[,)+∞) ∧ 𝐹 = (𝑦 ∈ (0[,)+∞) ↦ (𝑦 / (1 + 𝑦))))
Colors of variables: wff setvar class
Syntax hints:  wb 196  wa 383  w3a 1054   = wceq 1523  wtru 1524  wcel 2030   class class class wbr 4685  cmpt 4762  ccnv 5142  1-1-ontowf1o 5925  (class class class)co 6690  cc 9972  cr 9973  0cc0 9974  1c1 9975   + caddc 9977   · cmul 9979  +∞cpnf 10109  *cxr 10111   < clt 10112  cle 10113  cmin 10304   / cdiv 10722  +crp 11870  [,)cico 12215
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-op 4217  df-uni 4469  df-br 4686  df-opab 4746  df-mpt 4763  df-id 5053  df-po 5064  df-so 5065  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-er 7787  df-en 7998  df-dom 7999  df-sdom 8000  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-div 10723  df-rp 11871  df-ico 12219
This theorem is referenced by:  icopnfhmeo  22789  iccpnfcnv  22790
  Copyright terms: Public domain W3C validator