Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  icopnfcld Structured version   Visualization version   GIF version

Theorem icopnfcld 22764
 Description: Right-unbounded closed intervals are closed sets of the standard topology on ℝ. (Contributed by Mario Carneiro, 17-Feb-2015.)
Assertion
Ref Expression
icopnfcld (𝐴 ∈ ℝ → (𝐴[,)+∞) ∈ (Clsd‘(topGen‘ran (,))))

Proof of Theorem icopnfcld
Dummy variables 𝑥 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mnfxr 10280 . . . . . 6 -∞ ∈ ℝ*
21a1i 11 . . . . 5 (𝐴 ∈ ℝ → -∞ ∈ ℝ*)
3 rexr 10269 . . . . 5 (𝐴 ∈ ℝ → 𝐴 ∈ ℝ*)
4 pnfxr 10276 . . . . . 6 +∞ ∈ ℝ*
54a1i 11 . . . . 5 (𝐴 ∈ ℝ → +∞ ∈ ℝ*)
6 mnflt 12142 . . . . 5 (𝐴 ∈ ℝ → -∞ < 𝐴)
7 ltpnf 12139 . . . . 5 (𝐴 ∈ ℝ → 𝐴 < +∞)
8 df-ioo 12364 . . . . . 6 (,) = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧𝑧 < 𝑦)})
9 df-ico 12366 . . . . . 6 [,) = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧 < 𝑦)})
10 xrlenlt 10287 . . . . . 6 ((𝐴 ∈ ℝ*𝑤 ∈ ℝ*) → (𝐴𝑤 ↔ ¬ 𝑤 < 𝐴))
11 xrlttr 12158 . . . . . 6 ((𝑤 ∈ ℝ*𝐴 ∈ ℝ* ∧ +∞ ∈ ℝ*) → ((𝑤 < 𝐴𝐴 < +∞) → 𝑤 < +∞))
12 xrltletr 12173 . . . . . 6 ((-∞ ∈ ℝ*𝐴 ∈ ℝ*𝑤 ∈ ℝ*) → ((-∞ < 𝐴𝐴𝑤) → -∞ < 𝑤))
138, 9, 10, 8, 11, 12ixxun 12376 . . . . 5 (((-∞ ∈ ℝ*𝐴 ∈ ℝ* ∧ +∞ ∈ ℝ*) ∧ (-∞ < 𝐴𝐴 < +∞)) → ((-∞(,)𝐴) ∪ (𝐴[,)+∞)) = (-∞(,)+∞))
142, 3, 5, 6, 7, 13syl32anc 1481 . . . 4 (𝐴 ∈ ℝ → ((-∞(,)𝐴) ∪ (𝐴[,)+∞)) = (-∞(,)+∞))
15 ioomax 12433 . . . 4 (-∞(,)+∞) = ℝ
1614, 15syl6eq 2802 . . 3 (𝐴 ∈ ℝ → ((-∞(,)𝐴) ∪ (𝐴[,)+∞)) = ℝ)
17 ioossre 12420 . . . 4 (-∞(,)𝐴) ⊆ ℝ
188, 9, 10ixxdisj 12375 . . . . 5 ((-∞ ∈ ℝ*𝐴 ∈ ℝ* ∧ +∞ ∈ ℝ*) → ((-∞(,)𝐴) ∩ (𝐴[,)+∞)) = ∅)
192, 3, 5, 18syl3anc 1473 . . . 4 (𝐴 ∈ ℝ → ((-∞(,)𝐴) ∩ (𝐴[,)+∞)) = ∅)
20 uneqdifeq 4193 . . . 4 (((-∞(,)𝐴) ⊆ ℝ ∧ ((-∞(,)𝐴) ∩ (𝐴[,)+∞)) = ∅) → (((-∞(,)𝐴) ∪ (𝐴[,)+∞)) = ℝ ↔ (ℝ ∖ (-∞(,)𝐴)) = (𝐴[,)+∞)))
2117, 19, 20sylancr 698 . . 3 (𝐴 ∈ ℝ → (((-∞(,)𝐴) ∪ (𝐴[,)+∞)) = ℝ ↔ (ℝ ∖ (-∞(,)𝐴)) = (𝐴[,)+∞)))
2216, 21mpbid 222 . 2 (𝐴 ∈ ℝ → (ℝ ∖ (-∞(,)𝐴)) = (𝐴[,)+∞))
23 retop 22758 . . 3 (topGen‘ran (,)) ∈ Top
24 iooretop 22762 . . 3 (-∞(,)𝐴) ∈ (topGen‘ran (,))
25 uniretop 22759 . . . 4 ℝ = (topGen‘ran (,))
2625opncld 21031 . . 3 (((topGen‘ran (,)) ∈ Top ∧ (-∞(,)𝐴) ∈ (topGen‘ran (,))) → (ℝ ∖ (-∞(,)𝐴)) ∈ (Clsd‘(topGen‘ran (,))))
2723, 24, 26mp2an 710 . 2 (ℝ ∖ (-∞(,)𝐴)) ∈ (Clsd‘(topGen‘ran (,)))
2822, 27syl6eqelr 2840 1 (𝐴 ∈ ℝ → (𝐴[,)+∞) ∈ (Clsd‘(topGen‘ran (,))))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   = wceq 1624   ∈ wcel 2131   ∖ cdif 3704   ∪ cun 3705   ∩ cin 3706   ⊆ wss 3707  ∅c0 4050   class class class wbr 4796  ran crn 5259  ‘cfv 6041  (class class class)co 6805  ℝcr 10119  +∞cpnf 10255  -∞cmnf 10256  ℝ*cxr 10257   < clt 10258   ≤ cle 10259  (,)cioo 12360  [,)cico 12362  topGenctg 16292  Topctop 20892  Clsdccld 21014 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1863  ax-4 1878  ax-5 1980  ax-6 2046  ax-7 2082  ax-8 2133  ax-9 2140  ax-10 2160  ax-11 2175  ax-12 2188  ax-13 2383  ax-ext 2732  ax-sep 4925  ax-nul 4933  ax-pow 4984  ax-pr 5047  ax-un 7106  ax-cnex 10176  ax-resscn 10177  ax-1cn 10178  ax-icn 10179  ax-addcl 10180  ax-addrcl 10181  ax-mulcl 10182  ax-mulrcl 10183  ax-mulcom 10184  ax-addass 10185  ax-mulass 10186  ax-distr 10187  ax-i2m1 10188  ax-1ne0 10189  ax-1rid 10190  ax-rnegex 10191  ax-rrecex 10192  ax-cnre 10193  ax-pre-lttri 10194  ax-pre-lttrn 10195  ax-pre-ltadd 10196  ax-pre-mulgt0 10197  ax-pre-sup 10198 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1627  df-ex 1846  df-nf 1851  df-sb 2039  df-eu 2603  df-mo 2604  df-clab 2739  df-cleq 2745  df-clel 2748  df-nfc 2883  df-ne 2925  df-nel 3028  df-ral 3047  df-rex 3048  df-reu 3049  df-rmo 3050  df-rab 3051  df-v 3334  df-sbc 3569  df-csb 3667  df-dif 3710  df-un 3712  df-in 3714  df-ss 3721  df-pss 3723  df-nul 4051  df-if 4223  df-pw 4296  df-sn 4314  df-pr 4316  df-tp 4318  df-op 4320  df-uni 4581  df-iun 4666  df-br 4797  df-opab 4857  df-mpt 4874  df-tr 4897  df-id 5166  df-eprel 5171  df-po 5179  df-so 5180  df-fr 5217  df-we 5219  df-xp 5264  df-rel 5265  df-cnv 5266  df-co 5267  df-dm 5268  df-rn 5269  df-res 5270  df-ima 5271  df-pred 5833  df-ord 5879  df-on 5880  df-lim 5881  df-suc 5882  df-iota 6004  df-fun 6043  df-fn 6044  df-f 6045  df-f1 6046  df-fo 6047  df-f1o 6048  df-fv 6049  df-riota 6766  df-ov 6808  df-oprab 6809  df-mpt2 6810  df-om 7223  df-1st 7325  df-2nd 7326  df-wrecs 7568  df-recs 7629  df-rdg 7667  df-er 7903  df-en 8114  df-dom 8115  df-sdom 8116  df-sup 8505  df-inf 8506  df-pnf 10260  df-mnf 10261  df-xr 10262  df-ltxr 10263  df-le 10264  df-sub 10452  df-neg 10453  df-div 10869  df-nn 11205  df-n0 11477  df-z 11562  df-uz 11872  df-q 11974  df-ioo 12364  df-ico 12366  df-topgen 16298  df-top 20893  df-bases 20944  df-cld 21017 This theorem is referenced by:  sxbrsigalem3  30635  orvcgteel  30830  dvasin  33801  dvacos  33802  dvreasin  33803  dvreacos  33804  rfcnpre3  39683
 Copyright terms: Public domain W3C validator