![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > icopnfcld | Structured version Visualization version GIF version |
Description: Right-unbounded closed intervals are closed sets of the standard topology on ℝ. (Contributed by Mario Carneiro, 17-Feb-2015.) |
Ref | Expression |
---|---|
icopnfcld | ⊢ (𝐴 ∈ ℝ → (𝐴[,)+∞) ∈ (Clsd‘(topGen‘ran (,)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mnfxr 10280 | . . . . . 6 ⊢ -∞ ∈ ℝ* | |
2 | 1 | a1i 11 | . . . . 5 ⊢ (𝐴 ∈ ℝ → -∞ ∈ ℝ*) |
3 | rexr 10269 | . . . . 5 ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℝ*) | |
4 | pnfxr 10276 | . . . . . 6 ⊢ +∞ ∈ ℝ* | |
5 | 4 | a1i 11 | . . . . 5 ⊢ (𝐴 ∈ ℝ → +∞ ∈ ℝ*) |
6 | mnflt 12142 | . . . . 5 ⊢ (𝐴 ∈ ℝ → -∞ < 𝐴) | |
7 | ltpnf 12139 | . . . . 5 ⊢ (𝐴 ∈ ℝ → 𝐴 < +∞) | |
8 | df-ioo 12364 | . . . . . 6 ⊢ (,) = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧 ∧ 𝑧 < 𝑦)}) | |
9 | df-ico 12366 | . . . . . 6 ⊢ [,) = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦)}) | |
10 | xrlenlt 10287 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ* ∧ 𝑤 ∈ ℝ*) → (𝐴 ≤ 𝑤 ↔ ¬ 𝑤 < 𝐴)) | |
11 | xrlttr 12158 | . . . . . 6 ⊢ ((𝑤 ∈ ℝ* ∧ 𝐴 ∈ ℝ* ∧ +∞ ∈ ℝ*) → ((𝑤 < 𝐴 ∧ 𝐴 < +∞) → 𝑤 < +∞)) | |
12 | xrltletr 12173 | . . . . . 6 ⊢ ((-∞ ∈ ℝ* ∧ 𝐴 ∈ ℝ* ∧ 𝑤 ∈ ℝ*) → ((-∞ < 𝐴 ∧ 𝐴 ≤ 𝑤) → -∞ < 𝑤)) | |
13 | 8, 9, 10, 8, 11, 12 | ixxun 12376 | . . . . 5 ⊢ (((-∞ ∈ ℝ* ∧ 𝐴 ∈ ℝ* ∧ +∞ ∈ ℝ*) ∧ (-∞ < 𝐴 ∧ 𝐴 < +∞)) → ((-∞(,)𝐴) ∪ (𝐴[,)+∞)) = (-∞(,)+∞)) |
14 | 2, 3, 5, 6, 7, 13 | syl32anc 1481 | . . . 4 ⊢ (𝐴 ∈ ℝ → ((-∞(,)𝐴) ∪ (𝐴[,)+∞)) = (-∞(,)+∞)) |
15 | ioomax 12433 | . . . 4 ⊢ (-∞(,)+∞) = ℝ | |
16 | 14, 15 | syl6eq 2802 | . . 3 ⊢ (𝐴 ∈ ℝ → ((-∞(,)𝐴) ∪ (𝐴[,)+∞)) = ℝ) |
17 | ioossre 12420 | . . . 4 ⊢ (-∞(,)𝐴) ⊆ ℝ | |
18 | 8, 9, 10 | ixxdisj 12375 | . . . . 5 ⊢ ((-∞ ∈ ℝ* ∧ 𝐴 ∈ ℝ* ∧ +∞ ∈ ℝ*) → ((-∞(,)𝐴) ∩ (𝐴[,)+∞)) = ∅) |
19 | 2, 3, 5, 18 | syl3anc 1473 | . . . 4 ⊢ (𝐴 ∈ ℝ → ((-∞(,)𝐴) ∩ (𝐴[,)+∞)) = ∅) |
20 | uneqdifeq 4193 | . . . 4 ⊢ (((-∞(,)𝐴) ⊆ ℝ ∧ ((-∞(,)𝐴) ∩ (𝐴[,)+∞)) = ∅) → (((-∞(,)𝐴) ∪ (𝐴[,)+∞)) = ℝ ↔ (ℝ ∖ (-∞(,)𝐴)) = (𝐴[,)+∞))) | |
21 | 17, 19, 20 | sylancr 698 | . . 3 ⊢ (𝐴 ∈ ℝ → (((-∞(,)𝐴) ∪ (𝐴[,)+∞)) = ℝ ↔ (ℝ ∖ (-∞(,)𝐴)) = (𝐴[,)+∞))) |
22 | 16, 21 | mpbid 222 | . 2 ⊢ (𝐴 ∈ ℝ → (ℝ ∖ (-∞(,)𝐴)) = (𝐴[,)+∞)) |
23 | retop 22758 | . . 3 ⊢ (topGen‘ran (,)) ∈ Top | |
24 | iooretop 22762 | . . 3 ⊢ (-∞(,)𝐴) ∈ (topGen‘ran (,)) | |
25 | uniretop 22759 | . . . 4 ⊢ ℝ = ∪ (topGen‘ran (,)) | |
26 | 25 | opncld 21031 | . . 3 ⊢ (((topGen‘ran (,)) ∈ Top ∧ (-∞(,)𝐴) ∈ (topGen‘ran (,))) → (ℝ ∖ (-∞(,)𝐴)) ∈ (Clsd‘(topGen‘ran (,)))) |
27 | 23, 24, 26 | mp2an 710 | . 2 ⊢ (ℝ ∖ (-∞(,)𝐴)) ∈ (Clsd‘(topGen‘ran (,))) |
28 | 22, 27 | syl6eqelr 2840 | 1 ⊢ (𝐴 ∈ ℝ → (𝐴[,)+∞) ∈ (Clsd‘(topGen‘ran (,)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 = wceq 1624 ∈ wcel 2131 ∖ cdif 3704 ∪ cun 3705 ∩ cin 3706 ⊆ wss 3707 ∅c0 4050 class class class wbr 4796 ran crn 5259 ‘cfv 6041 (class class class)co 6805 ℝcr 10119 +∞cpnf 10255 -∞cmnf 10256 ℝ*cxr 10257 < clt 10258 ≤ cle 10259 (,)cioo 12360 [,)cico 12362 topGenctg 16292 Topctop 20892 Clsdccld 21014 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1863 ax-4 1878 ax-5 1980 ax-6 2046 ax-7 2082 ax-8 2133 ax-9 2140 ax-10 2160 ax-11 2175 ax-12 2188 ax-13 2383 ax-ext 2732 ax-sep 4925 ax-nul 4933 ax-pow 4984 ax-pr 5047 ax-un 7106 ax-cnex 10176 ax-resscn 10177 ax-1cn 10178 ax-icn 10179 ax-addcl 10180 ax-addrcl 10181 ax-mulcl 10182 ax-mulrcl 10183 ax-mulcom 10184 ax-addass 10185 ax-mulass 10186 ax-distr 10187 ax-i2m1 10188 ax-1ne0 10189 ax-1rid 10190 ax-rnegex 10191 ax-rrecex 10192 ax-cnre 10193 ax-pre-lttri 10194 ax-pre-lttrn 10195 ax-pre-ltadd 10196 ax-pre-mulgt0 10197 ax-pre-sup 10198 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1627 df-ex 1846 df-nf 1851 df-sb 2039 df-eu 2603 df-mo 2604 df-clab 2739 df-cleq 2745 df-clel 2748 df-nfc 2883 df-ne 2925 df-nel 3028 df-ral 3047 df-rex 3048 df-reu 3049 df-rmo 3050 df-rab 3051 df-v 3334 df-sbc 3569 df-csb 3667 df-dif 3710 df-un 3712 df-in 3714 df-ss 3721 df-pss 3723 df-nul 4051 df-if 4223 df-pw 4296 df-sn 4314 df-pr 4316 df-tp 4318 df-op 4320 df-uni 4581 df-iun 4666 df-br 4797 df-opab 4857 df-mpt 4874 df-tr 4897 df-id 5166 df-eprel 5171 df-po 5179 df-so 5180 df-fr 5217 df-we 5219 df-xp 5264 df-rel 5265 df-cnv 5266 df-co 5267 df-dm 5268 df-rn 5269 df-res 5270 df-ima 5271 df-pred 5833 df-ord 5879 df-on 5880 df-lim 5881 df-suc 5882 df-iota 6004 df-fun 6043 df-fn 6044 df-f 6045 df-f1 6046 df-fo 6047 df-f1o 6048 df-fv 6049 df-riota 6766 df-ov 6808 df-oprab 6809 df-mpt2 6810 df-om 7223 df-1st 7325 df-2nd 7326 df-wrecs 7568 df-recs 7629 df-rdg 7667 df-er 7903 df-en 8114 df-dom 8115 df-sdom 8116 df-sup 8505 df-inf 8506 df-pnf 10260 df-mnf 10261 df-xr 10262 df-ltxr 10263 df-le 10264 df-sub 10452 df-neg 10453 df-div 10869 df-nn 11205 df-n0 11477 df-z 11562 df-uz 11872 df-q 11974 df-ioo 12364 df-ico 12366 df-topgen 16298 df-top 20893 df-bases 20944 df-cld 21017 |
This theorem is referenced by: sxbrsigalem3 30635 orvcgteel 30830 dvasin 33801 dvacos 33802 dvreasin 33803 dvreacos 33804 rfcnpre3 39683 |
Copyright terms: Public domain | W3C validator |