![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > icof | Structured version Visualization version GIF version |
Description: The set of left-closed right-open intervals of extended reals maps to subsets of extended reals. (Contributed by Glauco Siliprandi, 3-Mar-2021.) |
Ref | Expression |
---|---|
icof | ⊢ [,):(ℝ* × ℝ*)⟶𝒫 ℝ* |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqidd 2761 | . . . 4 ⊢ ((𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ*) → {𝑧 ∈ ℝ* ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦)} = {𝑧 ∈ ℝ* ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦)}) | |
2 | ssrab2 3828 | . . . . 5 ⊢ {𝑧 ∈ ℝ* ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦)} ⊆ ℝ* | |
3 | xrex 12022 | . . . . . . 7 ⊢ ℝ* ∈ V | |
4 | 3 | rabex 4964 | . . . . . 6 ⊢ {𝑧 ∈ ℝ* ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦)} ∈ V |
5 | 4 | elpw 4308 | . . . . 5 ⊢ ({𝑧 ∈ ℝ* ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦)} ∈ 𝒫 ℝ* ↔ {𝑧 ∈ ℝ* ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦)} ⊆ ℝ*) |
6 | 2, 5 | mpbir 221 | . . . 4 ⊢ {𝑧 ∈ ℝ* ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦)} ∈ 𝒫 ℝ* |
7 | 1, 6 | syl6eqelr 2848 | . . 3 ⊢ ((𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ*) → {𝑧 ∈ ℝ* ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦)} ∈ 𝒫 ℝ*) |
8 | 7 | rgen2a 3115 | . 2 ⊢ ∀𝑥 ∈ ℝ* ∀𝑦 ∈ ℝ* {𝑧 ∈ ℝ* ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦)} ∈ 𝒫 ℝ* |
9 | df-ico 12374 | . . 3 ⊢ [,) = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦)}) | |
10 | 9 | fmpt2 7405 | . 2 ⊢ (∀𝑥 ∈ ℝ* ∀𝑦 ∈ ℝ* {𝑧 ∈ ℝ* ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦)} ∈ 𝒫 ℝ* ↔ [,):(ℝ* × ℝ*)⟶𝒫 ℝ*) |
11 | 8, 10 | mpbi 220 | 1 ⊢ [,):(ℝ* × ℝ*)⟶𝒫 ℝ* |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 383 ∈ wcel 2139 ∀wral 3050 {crab 3054 ⊆ wss 3715 𝒫 cpw 4302 class class class wbr 4804 × cxp 5264 ⟶wf 6045 ℝ*cxr 10265 < clt 10266 ≤ cle 10267 [,)cico 12370 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7114 ax-cnex 10184 ax-resscn 10185 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-ral 3055 df-rex 3056 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-op 4328 df-uni 4589 df-iun 4674 df-br 4805 df-opab 4865 df-mpt 4882 df-id 5174 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-fv 6057 df-oprab 6817 df-mpt2 6818 df-1st 7333 df-2nd 7334 df-xr 10270 df-ico 12374 |
This theorem is referenced by: fvvolicof 40711 volicoff 40715 voliooicof 40716 ovolval5lem2 41373 ovolval5lem3 41374 ovnovollem1 41376 ovnovollem2 41377 |
Copyright terms: Public domain | W3C validator |