![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ico01fl0 | Structured version Visualization version GIF version |
Description: The floor of a real number in [0, 1) is 0. Remark: may shorten the proof of modid 12902 or a version of it where the antecedent is membership in an interval. (Contributed by BJ, 29-Jun-2019.) |
Ref | Expression |
---|---|
ico01fl0 | ⊢ (𝐴 ∈ (0[,)1) → (⌊‘𝐴) = 0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0re 10241 | . . . 4 ⊢ 0 ∈ ℝ | |
2 | 1re 10240 | . . . . 5 ⊢ 1 ∈ ℝ | |
3 | 2 | rexri 10298 | . . . 4 ⊢ 1 ∈ ℝ* |
4 | icossre 12458 | . . . 4 ⊢ ((0 ∈ ℝ ∧ 1 ∈ ℝ*) → (0[,)1) ⊆ ℝ) | |
5 | 1, 3, 4 | mp2an 664 | . . 3 ⊢ (0[,)1) ⊆ ℝ |
6 | 5 | sseli 3746 | . 2 ⊢ (𝐴 ∈ (0[,)1) → 𝐴 ∈ ℝ) |
7 | 0xr 10287 | . . . 4 ⊢ 0 ∈ ℝ* | |
8 | elico1 12422 | . . . 4 ⊢ ((0 ∈ ℝ* ∧ 1 ∈ ℝ*) → (𝐴 ∈ (0[,)1) ↔ (𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴 ∧ 𝐴 < 1))) | |
9 | 7, 3, 8 | mp2an 664 | . . 3 ⊢ (𝐴 ∈ (0[,)1) ↔ (𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴 ∧ 𝐴 < 1)) |
10 | 9 | simp2bi 1139 | . 2 ⊢ (𝐴 ∈ (0[,)1) → 0 ≤ 𝐴) |
11 | 9 | simp3bi 1140 | . 2 ⊢ (𝐴 ∈ (0[,)1) → 𝐴 < 1) |
12 | recn 10227 | . . . . . . 7 ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℂ) | |
13 | 12 | addid2d 10438 | . . . . . 6 ⊢ (𝐴 ∈ ℝ → (0 + 𝐴) = 𝐴) |
14 | 13 | fveq2d 6336 | . . . . 5 ⊢ (𝐴 ∈ ℝ → (⌊‘(0 + 𝐴)) = (⌊‘𝐴)) |
15 | 14 | eqeq1d 2772 | . . . 4 ⊢ (𝐴 ∈ ℝ → ((⌊‘(0 + 𝐴)) = 0 ↔ (⌊‘𝐴) = 0)) |
16 | 0z 11589 | . . . . 5 ⊢ 0 ∈ ℤ | |
17 | flbi2 12825 | . . . . 5 ⊢ ((0 ∈ ℤ ∧ 𝐴 ∈ ℝ) → ((⌊‘(0 + 𝐴)) = 0 ↔ (0 ≤ 𝐴 ∧ 𝐴 < 1))) | |
18 | 16, 17 | mpan 662 | . . . 4 ⊢ (𝐴 ∈ ℝ → ((⌊‘(0 + 𝐴)) = 0 ↔ (0 ≤ 𝐴 ∧ 𝐴 < 1))) |
19 | 15, 18 | bitr3d 270 | . . 3 ⊢ (𝐴 ∈ ℝ → ((⌊‘𝐴) = 0 ↔ (0 ≤ 𝐴 ∧ 𝐴 < 1))) |
20 | 19 | biimpar 463 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ (0 ≤ 𝐴 ∧ 𝐴 < 1)) → (⌊‘𝐴) = 0) |
21 | 6, 10, 11, 20 | syl12anc 1473 | 1 ⊢ (𝐴 ∈ (0[,)1) → (⌊‘𝐴) = 0) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 382 ∧ w3a 1070 = wceq 1630 ∈ wcel 2144 ⊆ wss 3721 class class class wbr 4784 ‘cfv 6031 (class class class)co 6792 ℝcr 10136 0cc0 10137 1c1 10138 + caddc 10140 ℝ*cxr 10274 < clt 10275 ≤ cle 10276 ℤcz 11578 [,)cico 12381 ⌊cfl 12798 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1869 ax-4 1884 ax-5 1990 ax-6 2056 ax-7 2092 ax-8 2146 ax-9 2153 ax-10 2173 ax-11 2189 ax-12 2202 ax-13 2407 ax-ext 2750 ax-sep 4912 ax-nul 4920 ax-pow 4971 ax-pr 5034 ax-un 7095 ax-cnex 10193 ax-resscn 10194 ax-1cn 10195 ax-icn 10196 ax-addcl 10197 ax-addrcl 10198 ax-mulcl 10199 ax-mulrcl 10200 ax-mulcom 10201 ax-addass 10202 ax-mulass 10203 ax-distr 10204 ax-i2m1 10205 ax-1ne0 10206 ax-1rid 10207 ax-rnegex 10208 ax-rrecex 10209 ax-cnre 10210 ax-pre-lttri 10211 ax-pre-lttrn 10212 ax-pre-ltadd 10213 ax-pre-mulgt0 10214 ax-pre-sup 10215 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 827 df-3or 1071 df-3an 1072 df-tru 1633 df-ex 1852 df-nf 1857 df-sb 2049 df-eu 2621 df-mo 2622 df-clab 2757 df-cleq 2763 df-clel 2766 df-nfc 2901 df-ne 2943 df-nel 3046 df-ral 3065 df-rex 3066 df-reu 3067 df-rmo 3068 df-rab 3069 df-v 3351 df-sbc 3586 df-csb 3681 df-dif 3724 df-un 3726 df-in 3728 df-ss 3735 df-pss 3737 df-nul 4062 df-if 4224 df-pw 4297 df-sn 4315 df-pr 4317 df-tp 4319 df-op 4321 df-uni 4573 df-iun 4654 df-br 4785 df-opab 4845 df-mpt 4862 df-tr 4885 df-id 5157 df-eprel 5162 df-po 5170 df-so 5171 df-fr 5208 df-we 5210 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-pred 5823 df-ord 5869 df-on 5870 df-lim 5871 df-suc 5872 df-iota 5994 df-fun 6033 df-fn 6034 df-f 6035 df-f1 6036 df-fo 6037 df-f1o 6038 df-fv 6039 df-riota 6753 df-ov 6795 df-oprab 6796 df-mpt2 6797 df-om 7212 df-wrecs 7558 df-recs 7620 df-rdg 7658 df-er 7895 df-en 8109 df-dom 8110 df-sdom 8111 df-sup 8503 df-inf 8504 df-pnf 10277 df-mnf 10278 df-xr 10279 df-ltxr 10280 df-le 10281 df-sub 10469 df-neg 10470 df-nn 11222 df-n0 11494 df-z 11579 df-uz 11888 df-ico 12385 df-fl 12800 |
This theorem is referenced by: dnizeq0 32796 dignnld 42915 digexp 42919 |
Copyright terms: Public domain | W3C validator |