MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iccsplit Structured version   Visualization version   GIF version

Theorem iccsplit 12511
Description: Split a closed interval into the union of two closed intervals. (Contributed by Jeff Madsen, 2-Sep-2009.)
Assertion
Ref Expression
iccsplit ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ (𝐴[,]𝐵)) → (𝐴[,]𝐵) = ((𝐴[,]𝐶) ∪ (𝐶[,]𝐵)))

Proof of Theorem iccsplit
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 simplr1 1258 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ (𝐴[,]𝐵)) ∧ (𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥𝐵)) ∧ 𝑥 < 𝐶) → 𝑥 ∈ ℝ)
2 simplr2 1260 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ (𝐴[,]𝐵)) ∧ (𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥𝐵)) ∧ 𝑥 < 𝐶) → 𝐴𝑥)
3 simpr1 1231 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ (𝐴[,]𝐵)) ∧ (𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥𝐵)) → 𝑥 ∈ ℝ)
4 iccssre 12459 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,]𝐵) ⊆ ℝ)
54sseld 3748 . . . . . . . . . . . . 13 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐶 ∈ (𝐴[,]𝐵) → 𝐶 ∈ ℝ))
653impia 1107 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ (𝐴[,]𝐵)) → 𝐶 ∈ ℝ)
76adantr 473 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ (𝐴[,]𝐵)) ∧ (𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥𝐵)) → 𝐶 ∈ ℝ)
8 ltle 10326 . . . . . . . . . . 11 ((𝑥 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝑥 < 𝐶𝑥𝐶))
93, 7, 8syl2anc 693 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ (𝐴[,]𝐵)) ∧ (𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥𝐵)) → (𝑥 < 𝐶𝑥𝐶))
109imp 443 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ (𝐴[,]𝐵)) ∧ (𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥𝐵)) ∧ 𝑥 < 𝐶) → 𝑥𝐶)
111, 2, 103jca 1120 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ (𝐴[,]𝐵)) ∧ (𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥𝐵)) ∧ 𝑥 < 𝐶) → (𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥𝐶))
1211orcd 406 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ (𝐴[,]𝐵)) ∧ (𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥𝐵)) ∧ 𝑥 < 𝐶) → ((𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥𝐶) ∨ (𝑥 ∈ ℝ ∧ 𝐶𝑥𝑥𝐵)))
13 simplr1 1258 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ (𝐴[,]𝐵)) ∧ (𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥𝐵)) ∧ 𝐶𝑥) → 𝑥 ∈ ℝ)
14 simpr 480 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ (𝐴[,]𝐵)) ∧ (𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥𝐵)) ∧ 𝐶𝑥) → 𝐶𝑥)
15 simplr3 1262 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ (𝐴[,]𝐵)) ∧ (𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥𝐵)) ∧ 𝐶𝑥) → 𝑥𝐵)
1613, 14, 153jca 1120 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ (𝐴[,]𝐵)) ∧ (𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥𝐵)) ∧ 𝐶𝑥) → (𝑥 ∈ ℝ ∧ 𝐶𝑥𝑥𝐵))
1716olcd 407 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ (𝐴[,]𝐵)) ∧ (𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥𝐵)) ∧ 𝐶𝑥) → ((𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥𝐶) ∨ (𝑥 ∈ ℝ ∧ 𝐶𝑥𝑥𝐵)))
1812, 17, 3, 7ltlecasei 10345 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ (𝐴[,]𝐵)) ∧ (𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥𝐵)) → ((𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥𝐶) ∨ (𝑥 ∈ ℝ ∧ 𝐶𝑥𝑥𝐵)))
1918ex 448 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ (𝐴[,]𝐵)) → ((𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥𝐵) → ((𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥𝐶) ∨ (𝑥 ∈ ℝ ∧ 𝐶𝑥𝑥𝐵))))
20 simp1 1128 . . . . . . . 8 ((𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥𝐶) → 𝑥 ∈ ℝ)
2120a1i 11 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ (𝐴[,]𝐵)) → ((𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥𝐶) → 𝑥 ∈ ℝ))
22 simp2 1129 . . . . . . . 8 ((𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥𝐶) → 𝐴𝑥)
2322a1i 11 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ (𝐴[,]𝐵)) → ((𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥𝐶) → 𝐴𝑥))
24 elicc2 12442 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐶 ∈ (𝐴[,]𝐵) ↔ (𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶𝐵)))
25203ad2ant3 1127 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶𝐵) ∧ (𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥𝐶)) → 𝑥 ∈ ℝ)
26 simp1 1128 . . . . . . . . . . . 12 ((𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶𝐵) → 𝐶 ∈ ℝ)
27263ad2ant2 1126 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶𝐵) ∧ (𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥𝐶)) → 𝐶 ∈ ℝ)
28 simp1r 1238 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶𝐵) ∧ (𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥𝐶)) → 𝐵 ∈ ℝ)
29 simp3 1130 . . . . . . . . . . . 12 ((𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥𝐶) → 𝑥𝐶)
30293ad2ant3 1127 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶𝐵) ∧ (𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥𝐶)) → 𝑥𝐶)
31 simp3 1130 . . . . . . . . . . . 12 ((𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶𝐵) → 𝐶𝐵)
32313ad2ant2 1126 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶𝐵) ∧ (𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥𝐶)) → 𝐶𝐵)
3325, 27, 28, 30, 32letrd 10394 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶𝐵) ∧ (𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥𝐶)) → 𝑥𝐵)
34333exp 1110 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶𝐵) → ((𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥𝐶) → 𝑥𝐵)))
3524, 34sylbid 230 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐶 ∈ (𝐴[,]𝐵) → ((𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥𝐶) → 𝑥𝐵)))
36353impia 1107 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ (𝐴[,]𝐵)) → ((𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥𝐶) → 𝑥𝐵))
3721, 23, 363jcad 1121 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ (𝐴[,]𝐵)) → ((𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥𝐶) → (𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥𝐵)))
38 simp1 1128 . . . . . . . 8 ((𝑥 ∈ ℝ ∧ 𝐶𝑥𝑥𝐵) → 𝑥 ∈ ℝ)
3938a1i 11 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ (𝐴[,]𝐵)) → ((𝑥 ∈ ℝ ∧ 𝐶𝑥𝑥𝐵) → 𝑥 ∈ ℝ))
40 simp1l 1237 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶𝐵) ∧ (𝑥 ∈ ℝ ∧ 𝐶𝑥𝑥𝐵)) → 𝐴 ∈ ℝ)
41263ad2ant2 1126 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶𝐵) ∧ (𝑥 ∈ ℝ ∧ 𝐶𝑥𝑥𝐵)) → 𝐶 ∈ ℝ)
42383ad2ant3 1127 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶𝐵) ∧ (𝑥 ∈ ℝ ∧ 𝐶𝑥𝑥𝐵)) → 𝑥 ∈ ℝ)
43 simp2 1129 . . . . . . . . . . . 12 ((𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶𝐵) → 𝐴𝐶)
44433ad2ant2 1126 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶𝐵) ∧ (𝑥 ∈ ℝ ∧ 𝐶𝑥𝑥𝐵)) → 𝐴𝐶)
45 simp2 1129 . . . . . . . . . . . 12 ((𝑥 ∈ ℝ ∧ 𝐶𝑥𝑥𝐵) → 𝐶𝑥)
46453ad2ant3 1127 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶𝐵) ∧ (𝑥 ∈ ℝ ∧ 𝐶𝑥𝑥𝐵)) → 𝐶𝑥)
4740, 41, 42, 44, 46letrd 10394 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶𝐵) ∧ (𝑥 ∈ ℝ ∧ 𝐶𝑥𝑥𝐵)) → 𝐴𝑥)
48473exp 1110 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐶 ∈ ℝ ∧ 𝐴𝐶𝐶𝐵) → ((𝑥 ∈ ℝ ∧ 𝐶𝑥𝑥𝐵) → 𝐴𝑥)))
4924, 48sylbid 230 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐶 ∈ (𝐴[,]𝐵) → ((𝑥 ∈ ℝ ∧ 𝐶𝑥𝑥𝐵) → 𝐴𝑥)))
50493impia 1107 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ (𝐴[,]𝐵)) → ((𝑥 ∈ ℝ ∧ 𝐶𝑥𝑥𝐵) → 𝐴𝑥))
51 simp3 1130 . . . . . . . 8 ((𝑥 ∈ ℝ ∧ 𝐶𝑥𝑥𝐵) → 𝑥𝐵)
5251a1i 11 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ (𝐴[,]𝐵)) → ((𝑥 ∈ ℝ ∧ 𝐶𝑥𝑥𝐵) → 𝑥𝐵))
5339, 50, 523jcad 1121 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ (𝐴[,]𝐵)) → ((𝑥 ∈ ℝ ∧ 𝐶𝑥𝑥𝐵) → (𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥𝐵)))
5437, 53jaod 394 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ (𝐴[,]𝐵)) → (((𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥𝐶) ∨ (𝑥 ∈ ℝ ∧ 𝐶𝑥𝑥𝐵)) → (𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥𝐵)))
5519, 54impbid 202 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ (𝐴[,]𝐵)) → ((𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥𝐵) ↔ ((𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥𝐶) ∨ (𝑥 ∈ ℝ ∧ 𝐶𝑥𝑥𝐵))))
56 elicc2 12442 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝑥 ∈ (𝐴[,]𝐵) ↔ (𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥𝐵)))
57563adant3 1124 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ (𝐴[,]𝐵)) → (𝑥 ∈ (𝐴[,]𝐵) ↔ (𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥𝐵)))
585imdistani 725 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ (𝐴[,]𝐵)) → ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ ℝ))
59583impa 1098 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ (𝐴[,]𝐵)) → ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ ℝ))
60 elicc2 12442 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝑥 ∈ (𝐴[,]𝐶) ↔ (𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥𝐶)))
6160adantlr 750 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ ℝ) → (𝑥 ∈ (𝐴[,]𝐶) ↔ (𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥𝐶)))
62 elicc2 12442 . . . . . . . 8 ((𝐶 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝑥 ∈ (𝐶[,]𝐵) ↔ (𝑥 ∈ ℝ ∧ 𝐶𝑥𝑥𝐵)))
6362ancoms 469 . . . . . . 7 ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝑥 ∈ (𝐶[,]𝐵) ↔ (𝑥 ∈ ℝ ∧ 𝐶𝑥𝑥𝐵)))
6463adantll 749 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ ℝ) → (𝑥 ∈ (𝐶[,]𝐵) ↔ (𝑥 ∈ ℝ ∧ 𝐶𝑥𝑥𝐵)))
6561, 64orbi12d 745 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐶 ∈ ℝ) → ((𝑥 ∈ (𝐴[,]𝐶) ∨ 𝑥 ∈ (𝐶[,]𝐵)) ↔ ((𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥𝐶) ∨ (𝑥 ∈ ℝ ∧ 𝐶𝑥𝑥𝐵))))
6659, 65syl 17 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ (𝐴[,]𝐵)) → ((𝑥 ∈ (𝐴[,]𝐶) ∨ 𝑥 ∈ (𝐶[,]𝐵)) ↔ ((𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥𝐶) ∨ (𝑥 ∈ ℝ ∧ 𝐶𝑥𝑥𝐵))))
6755, 57, 663bitr4d 300 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ (𝐴[,]𝐵)) → (𝑥 ∈ (𝐴[,]𝐵) ↔ (𝑥 ∈ (𝐴[,]𝐶) ∨ 𝑥 ∈ (𝐶[,]𝐵))))
68 elun 3901 . . 3 (𝑥 ∈ ((𝐴[,]𝐶) ∪ (𝐶[,]𝐵)) ↔ (𝑥 ∈ (𝐴[,]𝐶) ∨ 𝑥 ∈ (𝐶[,]𝐵)))
6967, 68syl6bbr 278 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ (𝐴[,]𝐵)) → (𝑥 ∈ (𝐴[,]𝐵) ↔ 𝑥 ∈ ((𝐴[,]𝐶) ∪ (𝐶[,]𝐵))))
7069eqrdv 2767 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ (𝐴[,]𝐵)) → (𝐴[,]𝐵) = ((𝐴[,]𝐶) ∪ (𝐶[,]𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wo 382  wa 383  w3a 1069   = wceq 1629  wcel 2143  cun 3718   class class class wbr 4783  (class class class)co 6791  cr 10135   < clt 10274  cle 10275  [,]cicc 12382
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1868  ax-4 1883  ax-5 1989  ax-6 2055  ax-7 2091  ax-8 2145  ax-9 2152  ax-10 2172  ax-11 2188  ax-12 2201  ax-13 2406  ax-ext 2749  ax-sep 4911  ax-nul 4919  ax-pow 4970  ax-pr 5033  ax-un 7094  ax-cnex 10192  ax-resscn 10193  ax-pre-lttri 10210  ax-pre-lttrn 10211
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1070  df-3an 1071  df-tru 1632  df-ex 1851  df-nf 1856  df-sb 2048  df-eu 2620  df-mo 2621  df-clab 2756  df-cleq 2762  df-clel 2765  df-nfc 2900  df-ne 2942  df-nel 3045  df-ral 3064  df-rex 3065  df-rab 3068  df-v 3350  df-sbc 3585  df-csb 3680  df-dif 3723  df-un 3725  df-in 3727  df-ss 3734  df-nul 4061  df-if 4223  df-pw 4296  df-sn 4314  df-pr 4316  df-op 4320  df-uni 4572  df-br 4784  df-opab 4844  df-mpt 4861  df-id 5156  df-po 5169  df-so 5170  df-xp 5254  df-rel 5255  df-cnv 5256  df-co 5257  df-dm 5258  df-rn 5259  df-res 5260  df-ima 5261  df-iota 5993  df-fun 6032  df-fn 6033  df-f 6034  df-f1 6035  df-fo 6036  df-f1o 6037  df-fv 6038  df-ov 6794  df-oprab 6795  df-mpt2 6796  df-er 7894  df-en 8108  df-dom 8109  df-sdom 8110  df-pnf 10276  df-mnf 10277  df-xr 10278  df-ltxr 10279  df-le 10280  df-icc 12386
This theorem is referenced by:  cnmpt2pc  22953  volcn  23600  itgspliticc  23829  cvmliftlem10  31615  iblspltprt  40707
  Copyright terms: Public domain W3C validator