![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > iccpval | Structured version Visualization version GIF version |
Description: Partition consisting of a fixed number 𝑀 of parts. (Contributed by AV, 9-Jul-2020.) |
Ref | Expression |
---|---|
iccpval | ⊢ (𝑀 ∈ ℕ → (RePart‘𝑀) = {𝑝 ∈ (ℝ* ↑𝑚 (0...𝑀)) ∣ ∀𝑖 ∈ (0..^𝑀)(𝑝‘𝑖) < (𝑝‘(𝑖 + 1))}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-iccp 41868 | . . 3 ⊢ RePart = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ* ↑𝑚 (0...𝑚)) ∣ ∀𝑖 ∈ (0..^𝑚)(𝑝‘𝑖) < (𝑝‘(𝑖 + 1))}) | |
2 | 1 | a1i 11 | . 2 ⊢ (𝑀 ∈ ℕ → RePart = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ* ↑𝑚 (0...𝑚)) ∣ ∀𝑖 ∈ (0..^𝑚)(𝑝‘𝑖) < (𝑝‘(𝑖 + 1))})) |
3 | oveq2 6800 | . . . . 5 ⊢ (𝑚 = 𝑀 → (0...𝑚) = (0...𝑀)) | |
4 | 3 | oveq2d 6808 | . . . 4 ⊢ (𝑚 = 𝑀 → (ℝ* ↑𝑚 (0...𝑚)) = (ℝ* ↑𝑚 (0...𝑀))) |
5 | oveq2 6800 | . . . . 5 ⊢ (𝑚 = 𝑀 → (0..^𝑚) = (0..^𝑀)) | |
6 | 5 | raleqdv 3292 | . . . 4 ⊢ (𝑚 = 𝑀 → (∀𝑖 ∈ (0..^𝑚)(𝑝‘𝑖) < (𝑝‘(𝑖 + 1)) ↔ ∀𝑖 ∈ (0..^𝑀)(𝑝‘𝑖) < (𝑝‘(𝑖 + 1)))) |
7 | 4, 6 | rabeqbidv 3344 | . . 3 ⊢ (𝑚 = 𝑀 → {𝑝 ∈ (ℝ* ↑𝑚 (0...𝑚)) ∣ ∀𝑖 ∈ (0..^𝑚)(𝑝‘𝑖) < (𝑝‘(𝑖 + 1))} = {𝑝 ∈ (ℝ* ↑𝑚 (0...𝑀)) ∣ ∀𝑖 ∈ (0..^𝑀)(𝑝‘𝑖) < (𝑝‘(𝑖 + 1))}) |
8 | 7 | adantl 467 | . 2 ⊢ ((𝑀 ∈ ℕ ∧ 𝑚 = 𝑀) → {𝑝 ∈ (ℝ* ↑𝑚 (0...𝑚)) ∣ ∀𝑖 ∈ (0..^𝑚)(𝑝‘𝑖) < (𝑝‘(𝑖 + 1))} = {𝑝 ∈ (ℝ* ↑𝑚 (0...𝑀)) ∣ ∀𝑖 ∈ (0..^𝑀)(𝑝‘𝑖) < (𝑝‘(𝑖 + 1))}) |
9 | id 22 | . 2 ⊢ (𝑀 ∈ ℕ → 𝑀 ∈ ℕ) | |
10 | ovex 6822 | . . . 4 ⊢ (ℝ* ↑𝑚 (0...𝑀)) ∈ V | |
11 | 10 | rabex 4943 | . . 3 ⊢ {𝑝 ∈ (ℝ* ↑𝑚 (0...𝑀)) ∣ ∀𝑖 ∈ (0..^𝑀)(𝑝‘𝑖) < (𝑝‘(𝑖 + 1))} ∈ V |
12 | 11 | a1i 11 | . 2 ⊢ (𝑀 ∈ ℕ → {𝑝 ∈ (ℝ* ↑𝑚 (0...𝑀)) ∣ ∀𝑖 ∈ (0..^𝑀)(𝑝‘𝑖) < (𝑝‘(𝑖 + 1))} ∈ V) |
13 | 2, 8, 9, 12 | fvmptd 6430 | 1 ⊢ (𝑀 ∈ ℕ → (RePart‘𝑀) = {𝑝 ∈ (ℝ* ↑𝑚 (0...𝑀)) ∣ ∀𝑖 ∈ (0..^𝑀)(𝑝‘𝑖) < (𝑝‘(𝑖 + 1))}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1630 ∈ wcel 2144 ∀wral 3060 {crab 3064 Vcvv 3349 class class class wbr 4784 ↦ cmpt 4861 ‘cfv 6031 (class class class)co 6792 ↑𝑚 cmap 8008 0cc0 10137 1c1 10138 + caddc 10140 ℝ*cxr 10274 < clt 10275 ℕcn 11221 ...cfz 12532 ..^cfzo 12672 RePartciccp 41867 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1869 ax-4 1884 ax-5 1990 ax-6 2056 ax-7 2092 ax-9 2153 ax-10 2173 ax-11 2189 ax-12 2202 ax-13 2407 ax-ext 2750 ax-sep 4912 ax-nul 4920 ax-pr 5034 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 827 df-3an 1072 df-tru 1633 df-ex 1852 df-nf 1857 df-sb 2049 df-eu 2621 df-mo 2622 df-clab 2757 df-cleq 2763 df-clel 2766 df-nfc 2901 df-ral 3065 df-rex 3066 df-rab 3069 df-v 3351 df-sbc 3586 df-csb 3681 df-dif 3724 df-un 3726 df-in 3728 df-ss 3735 df-nul 4062 df-if 4224 df-sn 4315 df-pr 4317 df-op 4321 df-uni 4573 df-br 4785 df-opab 4845 df-mpt 4862 df-id 5157 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-iota 5994 df-fun 6033 df-fv 6039 df-ov 6795 df-iccp 41868 |
This theorem is referenced by: iccpart 41870 |
Copyright terms: Public domain | W3C validator |