![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > iccpartxr | Structured version Visualization version GIF version |
Description: If there is a partition, then all intermediate points and bounds are extended real numbers. (Contributed by AV, 11-Jul-2020.) |
Ref | Expression |
---|---|
iccpartgtprec.m | ⊢ (𝜑 → 𝑀 ∈ ℕ) |
iccpartgtprec.p | ⊢ (𝜑 → 𝑃 ∈ (RePart‘𝑀)) |
iccpartxr.i | ⊢ (𝜑 → 𝐼 ∈ (0...𝑀)) |
Ref | Expression |
---|---|
iccpartxr | ⊢ (𝜑 → (𝑃‘𝐼) ∈ ℝ*) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iccpartgtprec.p | . . . . 5 ⊢ (𝜑 → 𝑃 ∈ (RePart‘𝑀)) | |
2 | iccpartgtprec.m | . . . . . 6 ⊢ (𝜑 → 𝑀 ∈ ℕ) | |
3 | iccpart 41862 | . . . . . 6 ⊢ (𝑀 ∈ ℕ → (𝑃 ∈ (RePart‘𝑀) ↔ (𝑃 ∈ (ℝ* ↑𝑚 (0...𝑀)) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑃‘𝑖) < (𝑃‘(𝑖 + 1))))) | |
4 | 2, 3 | syl 17 | . . . . 5 ⊢ (𝜑 → (𝑃 ∈ (RePart‘𝑀) ↔ (𝑃 ∈ (ℝ* ↑𝑚 (0...𝑀)) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑃‘𝑖) < (𝑃‘(𝑖 + 1))))) |
5 | 1, 4 | mpbid 222 | . . . 4 ⊢ (𝜑 → (𝑃 ∈ (ℝ* ↑𝑚 (0...𝑀)) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑃‘𝑖) < (𝑃‘(𝑖 + 1)))) |
6 | 5 | simpld 477 | . . 3 ⊢ (𝜑 → 𝑃 ∈ (ℝ* ↑𝑚 (0...𝑀))) |
7 | elmapi 8045 | . . 3 ⊢ (𝑃 ∈ (ℝ* ↑𝑚 (0...𝑀)) → 𝑃:(0...𝑀)⟶ℝ*) | |
8 | 6, 7 | syl 17 | . 2 ⊢ (𝜑 → 𝑃:(0...𝑀)⟶ℝ*) |
9 | iccpartxr.i | . 2 ⊢ (𝜑 → 𝐼 ∈ (0...𝑀)) | |
10 | 8, 9 | ffvelrnd 6523 | 1 ⊢ (𝜑 → (𝑃‘𝐼) ∈ ℝ*) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 383 ∈ wcel 2139 ∀wral 3050 class class class wbr 4804 ⟶wf 6045 ‘cfv 6049 (class class class)co 6813 ↑𝑚 cmap 8023 0cc0 10128 1c1 10129 + caddc 10131 ℝ*cxr 10265 < clt 10266 ℕcn 11212 ...cfz 12519 ..^cfzo 12659 RePartciccp 41859 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7114 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-ral 3055 df-rex 3056 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-op 4328 df-uni 4589 df-iun 4674 df-br 4805 df-opab 4865 df-mpt 4882 df-id 5174 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-fv 6057 df-ov 6816 df-oprab 6817 df-mpt2 6818 df-1st 7333 df-2nd 7334 df-map 8025 df-iccp 41860 |
This theorem is referenced by: iccpartipre 41867 iccpartiltu 41868 iccpartigtl 41869 iccpartlt 41870 iccpartleu 41874 iccpartgel 41875 iccpartrn 41876 iccelpart 41879 iccpartiun 41880 icceuelpartlem 41881 icceuelpart 41882 iccpartdisj 41883 iccpartnel 41884 bgoldbtbndlem2 42204 |
Copyright terms: Public domain | W3C validator |