![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > iccpartimp | Structured version Visualization version GIF version |
Description: Implications for a class being a partition. (Contributed by AV, 11-Jul-2020.) |
Ref | Expression |
---|---|
iccpartimp | ⊢ ((𝑀 ∈ ℕ ∧ 𝑃 ∈ (RePart‘𝑀) ∧ 𝐼 ∈ (0..^𝑀)) → (𝑃 ∈ (ℝ* ↑𝑚 (0...𝑀)) ∧ (𝑃‘𝐼) < (𝑃‘(𝐼 + 1)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iccpart 41677 | . . 3 ⊢ (𝑀 ∈ ℕ → (𝑃 ∈ (RePart‘𝑀) ↔ (𝑃 ∈ (ℝ* ↑𝑚 (0...𝑀)) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑃‘𝑖) < (𝑃‘(𝑖 + 1))))) | |
2 | fveq2 6229 | . . . . . . . 8 ⊢ (𝑖 = 𝐼 → (𝑃‘𝑖) = (𝑃‘𝐼)) | |
3 | oveq1 6697 | . . . . . . . . 9 ⊢ (𝑖 = 𝐼 → (𝑖 + 1) = (𝐼 + 1)) | |
4 | 3 | fveq2d 6233 | . . . . . . . 8 ⊢ (𝑖 = 𝐼 → (𝑃‘(𝑖 + 1)) = (𝑃‘(𝐼 + 1))) |
5 | 2, 4 | breq12d 4698 | . . . . . . 7 ⊢ (𝑖 = 𝐼 → ((𝑃‘𝑖) < (𝑃‘(𝑖 + 1)) ↔ (𝑃‘𝐼) < (𝑃‘(𝐼 + 1)))) |
6 | 5 | rspcva 3338 | . . . . . 6 ⊢ ((𝐼 ∈ (0..^𝑀) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑃‘𝑖) < (𝑃‘(𝑖 + 1))) → (𝑃‘𝐼) < (𝑃‘(𝐼 + 1))) |
7 | 6 | expcom 450 | . . . . 5 ⊢ (∀𝑖 ∈ (0..^𝑀)(𝑃‘𝑖) < (𝑃‘(𝑖 + 1)) → (𝐼 ∈ (0..^𝑀) → (𝑃‘𝐼) < (𝑃‘(𝐼 + 1)))) |
8 | 7 | adantl 481 | . . . 4 ⊢ ((𝑃 ∈ (ℝ* ↑𝑚 (0...𝑀)) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑃‘𝑖) < (𝑃‘(𝑖 + 1))) → (𝐼 ∈ (0..^𝑀) → (𝑃‘𝐼) < (𝑃‘(𝐼 + 1)))) |
9 | simpl 472 | . . . 4 ⊢ ((𝑃 ∈ (ℝ* ↑𝑚 (0...𝑀)) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑃‘𝑖) < (𝑃‘(𝑖 + 1))) → 𝑃 ∈ (ℝ* ↑𝑚 (0...𝑀))) | |
10 | 8, 9 | jctild 565 | . . 3 ⊢ ((𝑃 ∈ (ℝ* ↑𝑚 (0...𝑀)) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑃‘𝑖) < (𝑃‘(𝑖 + 1))) → (𝐼 ∈ (0..^𝑀) → (𝑃 ∈ (ℝ* ↑𝑚 (0...𝑀)) ∧ (𝑃‘𝐼) < (𝑃‘(𝐼 + 1))))) |
11 | 1, 10 | syl6bi 243 | . 2 ⊢ (𝑀 ∈ ℕ → (𝑃 ∈ (RePart‘𝑀) → (𝐼 ∈ (0..^𝑀) → (𝑃 ∈ (ℝ* ↑𝑚 (0...𝑀)) ∧ (𝑃‘𝐼) < (𝑃‘(𝐼 + 1)))))) |
12 | 11 | 3imp 1275 | 1 ⊢ ((𝑀 ∈ ℕ ∧ 𝑃 ∈ (RePart‘𝑀) ∧ 𝐼 ∈ (0..^𝑀)) → (𝑃 ∈ (ℝ* ↑𝑚 (0...𝑀)) ∧ (𝑃‘𝐼) < (𝑃‘(𝐼 + 1)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 ∧ w3a 1054 = wceq 1523 ∈ wcel 2030 ∀wral 2941 class class class wbr 4685 ‘cfv 5926 (class class class)co 6690 ↑𝑚 cmap 7899 0cc0 9974 1c1 9975 + caddc 9977 ℝ*cxr 10111 < clt 10112 ℕcn 11058 ...cfz 12364 ..^cfzo 12504 RePartciccp 41674 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-sep 4814 ax-nul 4822 ax-pr 4936 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ral 2946 df-rex 2947 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-nul 3949 df-if 4120 df-sn 4211 df-pr 4213 df-op 4217 df-uni 4469 df-br 4686 df-opab 4746 df-mpt 4763 df-id 5053 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-iota 5889 df-fun 5928 df-fv 5934 df-ov 6693 df-iccp 41675 |
This theorem is referenced by: iccpartgtprec 41681 iccpartipre 41682 iccpartiltu 41683 iccpartigtl 41684 iccpartlt 41685 iccpartgt 41688 |
Copyright terms: Public domain | W3C validator |