Mathbox for Alexander van der Vekens < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iccpartiltu Structured version   Visualization version   GIF version

Theorem iccpartiltu 41785
 Description: If there is a partition, then all intermediate points are strictly less than the upper bound. (Contributed by AV, 12-Jul-2020.)
Hypotheses
Ref Expression
iccpartgtprec.m (𝜑𝑀 ∈ ℕ)
iccpartgtprec.p (𝜑𝑃 ∈ (RePart‘𝑀))
Assertion
Ref Expression
iccpartiltu (𝜑 → ∀𝑖 ∈ (1..^𝑀)(𝑃𝑖) < (𝑃𝑀))
Distinct variable groups:   𝑖,𝑀   𝑃,𝑖   𝜑,𝑖

Proof of Theorem iccpartiltu
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 iccpartgtprec.m . 2 (𝜑𝑀 ∈ ℕ)
2 ral0 4184 . . . . 5 𝑖 ∈ ∅ (𝑃𝑖) < (𝑃‘1)
3 oveq2 6773 . . . . . . 7 (𝑀 = 1 → (1..^𝑀) = (1..^1))
4 fzo0 12607 . . . . . . 7 (1..^1) = ∅
53, 4syl6eq 2774 . . . . . 6 (𝑀 = 1 → (1..^𝑀) = ∅)
6 fveq2 6304 . . . . . . 7 (𝑀 = 1 → (𝑃𝑀) = (𝑃‘1))
76breq2d 4772 . . . . . 6 (𝑀 = 1 → ((𝑃𝑖) < (𝑃𝑀) ↔ (𝑃𝑖) < (𝑃‘1)))
85, 7raleqbidv 3255 . . . . 5 (𝑀 = 1 → (∀𝑖 ∈ (1..^𝑀)(𝑃𝑖) < (𝑃𝑀) ↔ ∀𝑖 ∈ ∅ (𝑃𝑖) < (𝑃‘1)))
92, 8mpbiri 248 . . . 4 (𝑀 = 1 → ∀𝑖 ∈ (1..^𝑀)(𝑃𝑖) < (𝑃𝑀))
1092a1d 26 . . 3 (𝑀 = 1 → (𝜑 → (𝑀 ∈ ℕ → ∀𝑖 ∈ (1..^𝑀)(𝑃𝑖) < (𝑃𝑀))))
11 simpr 479 . . . . . . 7 (((𝜑 ∧ ¬ 𝑀 = 1) ∧ 𝑀 ∈ ℕ) → 𝑀 ∈ ℕ)
12 iccpartgtprec.p . . . . . . . . 9 (𝜑𝑃 ∈ (RePart‘𝑀))
1312adantr 472 . . . . . . . 8 ((𝜑 ∧ ¬ 𝑀 = 1) → 𝑃 ∈ (RePart‘𝑀))
1413adantr 472 . . . . . . 7 (((𝜑 ∧ ¬ 𝑀 = 1) ∧ 𝑀 ∈ ℕ) → 𝑃 ∈ (RePart‘𝑀))
15 nnnn0 11412 . . . . . . . . 9 (𝑀 ∈ ℕ → 𝑀 ∈ ℕ0)
16 nn0fz0 12552 . . . . . . . . 9 (𝑀 ∈ ℕ0𝑀 ∈ (0...𝑀))
1715, 16sylib 208 . . . . . . . 8 (𝑀 ∈ ℕ → 𝑀 ∈ (0...𝑀))
1817adantl 473 . . . . . . 7 (((𝜑 ∧ ¬ 𝑀 = 1) ∧ 𝑀 ∈ ℕ) → 𝑀 ∈ (0...𝑀))
1911, 14, 18iccpartxr 41782 . . . . . 6 (((𝜑 ∧ ¬ 𝑀 = 1) ∧ 𝑀 ∈ ℕ) → (𝑃𝑀) ∈ ℝ*)
20 elxr 12064 . . . . . . 7 ((𝑃𝑀) ∈ ℝ* ↔ ((𝑃𝑀) ∈ ℝ ∨ (𝑃𝑀) = +∞ ∨ (𝑃𝑀) = -∞))
21 elfzoelz 12585 . . . . . . . . . . . . . 14 (𝑖 ∈ (1..^𝑀) → 𝑖 ∈ ℤ)
2221ad2antll 767 . . . . . . . . . . . . 13 (((𝑃𝑀) ∈ ℝ ∧ (((𝜑 ∧ ¬ 𝑀 = 1) ∧ 𝑀 ∈ ℕ) ∧ 𝑖 ∈ (1..^𝑀))) → 𝑖 ∈ ℤ)
23 elfzo2 12588 . . . . . . . . . . . . . . 15 (𝑖 ∈ (1..^𝑀) ↔ (𝑖 ∈ (ℤ‘1) ∧ 𝑀 ∈ ℤ ∧ 𝑖 < 𝑀))
24 eluzelz 11810 . . . . . . . . . . . . . . . . . 18 (𝑖 ∈ (ℤ‘1) → 𝑖 ∈ ℤ)
2524peano2zd 11598 . . . . . . . . . . . . . . . . 17 (𝑖 ∈ (ℤ‘1) → (𝑖 + 1) ∈ ℤ)
26253ad2ant1 1125 . . . . . . . . . . . . . . . 16 ((𝑖 ∈ (ℤ‘1) ∧ 𝑀 ∈ ℤ ∧ 𝑖 < 𝑀) → (𝑖 + 1) ∈ ℤ)
27 simp2 1129 . . . . . . . . . . . . . . . 16 ((𝑖 ∈ (ℤ‘1) ∧ 𝑀 ∈ ℤ ∧ 𝑖 < 𝑀) → 𝑀 ∈ ℤ)
28 zltp1le 11540 . . . . . . . . . . . . . . . . . 18 ((𝑖 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑖 < 𝑀 ↔ (𝑖 + 1) ≤ 𝑀))
2924, 28sylan 489 . . . . . . . . . . . . . . . . 17 ((𝑖 ∈ (ℤ‘1) ∧ 𝑀 ∈ ℤ) → (𝑖 < 𝑀 ↔ (𝑖 + 1) ≤ 𝑀))
3029biimp3a 1545 . . . . . . . . . . . . . . . 16 ((𝑖 ∈ (ℤ‘1) ∧ 𝑀 ∈ ℤ ∧ 𝑖 < 𝑀) → (𝑖 + 1) ≤ 𝑀)
31 eluz2 11806 . . . . . . . . . . . . . . . 16 (𝑀 ∈ (ℤ‘(𝑖 + 1)) ↔ ((𝑖 + 1) ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ (𝑖 + 1) ≤ 𝑀))
3226, 27, 30, 31syl3anbrc 1383 . . . . . . . . . . . . . . 15 ((𝑖 ∈ (ℤ‘1) ∧ 𝑀 ∈ ℤ ∧ 𝑖 < 𝑀) → 𝑀 ∈ (ℤ‘(𝑖 + 1)))
3323, 32sylbi 207 . . . . . . . . . . . . . 14 (𝑖 ∈ (1..^𝑀) → 𝑀 ∈ (ℤ‘(𝑖 + 1)))
3433ad2antll 767 . . . . . . . . . . . . 13 (((𝑃𝑀) ∈ ℝ ∧ (((𝜑 ∧ ¬ 𝑀 = 1) ∧ 𝑀 ∈ ℕ) ∧ 𝑖 ∈ (1..^𝑀))) → 𝑀 ∈ (ℤ‘(𝑖 + 1)))
35 fveq2 6304 . . . . . . . . . . . . . . . . . . . 20 (𝑘 = 𝑀 → (𝑃𝑘) = (𝑃𝑀))
3635eqcomd 2730 . . . . . . . . . . . . . . . . . . 19 (𝑘 = 𝑀 → (𝑃𝑀) = (𝑃𝑘))
3736eleq1d 2788 . . . . . . . . . . . . . . . . . 18 (𝑘 = 𝑀 → ((𝑃𝑀) ∈ ℝ ↔ (𝑃𝑘) ∈ ℝ))
3837biimpcd 239 . . . . . . . . . . . . . . . . 17 ((𝑃𝑀) ∈ ℝ → (𝑘 = 𝑀 → (𝑃𝑘) ∈ ℝ))
3938adantr 472 . . . . . . . . . . . . . . . 16 (((𝑃𝑀) ∈ ℝ ∧ (((𝜑 ∧ ¬ 𝑀 = 1) ∧ 𝑀 ∈ ℕ) ∧ 𝑖 ∈ (1..^𝑀))) → (𝑘 = 𝑀 → (𝑃𝑘) ∈ ℝ))
4039adantr 472 . . . . . . . . . . . . . . 15 ((((𝑃𝑀) ∈ ℝ ∧ (((𝜑 ∧ ¬ 𝑀 = 1) ∧ 𝑀 ∈ ℕ) ∧ 𝑖 ∈ (1..^𝑀))) ∧ 𝑘 ∈ (𝑖...𝑀)) → (𝑘 = 𝑀 → (𝑃𝑘) ∈ ℝ))
4140com12 32 . . . . . . . . . . . . . 14 (𝑘 = 𝑀 → ((((𝑃𝑀) ∈ ℝ ∧ (((𝜑 ∧ ¬ 𝑀 = 1) ∧ 𝑀 ∈ ℕ) ∧ 𝑖 ∈ (1..^𝑀))) ∧ 𝑘 ∈ (𝑖...𝑀)) → (𝑃𝑘) ∈ ℝ))
4211adantr 472 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ ¬ 𝑀 = 1) ∧ 𝑀 ∈ ℕ) ∧ 𝑖 ∈ (1..^𝑀)) → 𝑀 ∈ ℕ)
4342adantl 473 . . . . . . . . . . . . . . . . . 18 (((𝑃𝑀) ∈ ℝ ∧ (((𝜑 ∧ ¬ 𝑀 = 1) ∧ 𝑀 ∈ ℕ) ∧ 𝑖 ∈ (1..^𝑀))) → 𝑀 ∈ ℕ)
4443adantr 472 . . . . . . . . . . . . . . . . 17 ((((𝑃𝑀) ∈ ℝ ∧ (((𝜑 ∧ ¬ 𝑀 = 1) ∧ 𝑀 ∈ ℕ) ∧ 𝑖 ∈ (1..^𝑀))) ∧ 𝑘 ∈ (𝑖...𝑀)) → 𝑀 ∈ ℕ)
4544adantl 473 . . . . . . . . . . . . . . . 16 ((¬ 𝑘 = 𝑀 ∧ (((𝑃𝑀) ∈ ℝ ∧ (((𝜑 ∧ ¬ 𝑀 = 1) ∧ 𝑀 ∈ ℕ) ∧ 𝑖 ∈ (1..^𝑀))) ∧ 𝑘 ∈ (𝑖...𝑀))) → 𝑀 ∈ ℕ)
4614adantr 472 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ ¬ 𝑀 = 1) ∧ 𝑀 ∈ ℕ) ∧ 𝑖 ∈ (1..^𝑀)) → 𝑃 ∈ (RePart‘𝑀))
4746adantl 473 . . . . . . . . . . . . . . . . . 18 (((𝑃𝑀) ∈ ℝ ∧ (((𝜑 ∧ ¬ 𝑀 = 1) ∧ 𝑀 ∈ ℕ) ∧ 𝑖 ∈ (1..^𝑀))) → 𝑃 ∈ (RePart‘𝑀))
4847adantr 472 . . . . . . . . . . . . . . . . 17 ((((𝑃𝑀) ∈ ℝ ∧ (((𝜑 ∧ ¬ 𝑀 = 1) ∧ 𝑀 ∈ ℕ) ∧ 𝑖 ∈ (1..^𝑀))) ∧ 𝑘 ∈ (𝑖...𝑀)) → 𝑃 ∈ (RePart‘𝑀))
4948adantl 473 . . . . . . . . . . . . . . . 16 ((¬ 𝑘 = 𝑀 ∧ (((𝑃𝑀) ∈ ℝ ∧ (((𝜑 ∧ ¬ 𝑀 = 1) ∧ 𝑀 ∈ ℕ) ∧ 𝑖 ∈ (1..^𝑀))) ∧ 𝑘 ∈ (𝑖...𝑀))) → 𝑃 ∈ (RePart‘𝑀))
50 elfz2 12447 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑘 ∈ (𝑖...𝑀) ↔ ((𝑖 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ (𝑖𝑘𝑘𝑀)))
51 eluz2 11806 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑖 ∈ (ℤ‘1) ↔ (1 ∈ ℤ ∧ 𝑖 ∈ ℤ ∧ 1 ≤ 𝑖))
52 1red 10168 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝑖 ∈ ℤ ∧ 𝑘 ∈ ℤ) → 1 ∈ ℝ)
53 zre 11494 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (𝑖 ∈ ℤ → 𝑖 ∈ ℝ)
5453adantr 472 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝑖 ∈ ℤ ∧ 𝑘 ∈ ℤ) → 𝑖 ∈ ℝ)
55 zre 11494 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (𝑘 ∈ ℤ → 𝑘 ∈ ℝ)
5655adantl 473 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝑖 ∈ ℤ ∧ 𝑘 ∈ ℤ) → 𝑘 ∈ ℝ)
57 letr 10244 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((1 ∈ ℝ ∧ 𝑖 ∈ ℝ ∧ 𝑘 ∈ ℝ) → ((1 ≤ 𝑖𝑖𝑘) → 1 ≤ 𝑘))
5852, 54, 56, 57syl3anc 1439 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝑖 ∈ ℤ ∧ 𝑘 ∈ ℤ) → ((1 ≤ 𝑖𝑖𝑘) → 1 ≤ 𝑘))
5958expcomd 453 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝑖 ∈ ℤ ∧ 𝑘 ∈ ℤ) → (𝑖𝑘 → (1 ≤ 𝑖 → 1 ≤ 𝑘)))
6059adantrd 485 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝑖 ∈ ℤ ∧ 𝑘 ∈ ℤ) → ((𝑖𝑘𝑘𝑀) → (1 ≤ 𝑖 → 1 ≤ 𝑘)))
61603adant2 1123 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝑖 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑘 ∈ ℤ) → ((𝑖𝑘𝑘𝑀) → (1 ≤ 𝑖 → 1 ≤ 𝑘)))
6261imp 444 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝑖 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ (𝑖𝑘𝑘𝑀)) → (1 ≤ 𝑖 → 1 ≤ 𝑘))
6362com12 32 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (1 ≤ 𝑖 → (((𝑖 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ (𝑖𝑘𝑘𝑀)) → 1 ≤ 𝑘))
64633ad2ant3 1127 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((1 ∈ ℤ ∧ 𝑖 ∈ ℤ ∧ 1 ≤ 𝑖) → (((𝑖 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ (𝑖𝑘𝑘𝑀)) → 1 ≤ 𝑘))
6551, 64sylbi 207 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑖 ∈ (ℤ‘1) → (((𝑖 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ (𝑖𝑘𝑘𝑀)) → 1 ≤ 𝑘))
66653ad2ant1 1125 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑖 ∈ (ℤ‘1) ∧ 𝑀 ∈ ℤ ∧ 𝑖 < 𝑀) → (((𝑖 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ (𝑖𝑘𝑘𝑀)) → 1 ≤ 𝑘))
6723, 66sylbi 207 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑖 ∈ (1..^𝑀) → (((𝑖 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ (𝑖𝑘𝑘𝑀)) → 1 ≤ 𝑘))
6850, 67syl5bi 232 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑖 ∈ (1..^𝑀) → (𝑘 ∈ (𝑖...𝑀) → 1 ≤ 𝑘))
6968imp 444 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑖 ∈ (1..^𝑀) ∧ 𝑘 ∈ (𝑖...𝑀)) → 1 ≤ 𝑘)
70693adant3 1124 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑖 ∈ (1..^𝑀) ∧ 𝑘 ∈ (𝑖...𝑀) ∧ ¬ 𝑘 = 𝑀) → 1 ≤ 𝑘)
71 zre 11494 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑀 ∈ ℤ → 𝑀 ∈ ℝ)
7271, 55anim12ci 592 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝑀 ∈ ℤ ∧ 𝑘 ∈ ℤ) → (𝑘 ∈ ℝ ∧ 𝑀 ∈ ℝ))
73723adant1 1122 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝑖 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑘 ∈ ℤ) → (𝑘 ∈ ℝ ∧ 𝑀 ∈ ℝ))
74 ltlen 10251 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝑘 ∈ ℝ ∧ 𝑀 ∈ ℝ) → (𝑘 < 𝑀 ↔ (𝑘𝑀𝑀𝑘)))
7573, 74syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑖 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑘 ∈ ℤ) → (𝑘 < 𝑀 ↔ (𝑘𝑀𝑀𝑘)))
76 nesym 2952 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑀𝑘 ↔ ¬ 𝑘 = 𝑀)
7776anbi2i 732 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑘𝑀𝑀𝑘) ↔ (𝑘𝑀 ∧ ¬ 𝑘 = 𝑀))
7875, 77syl6rbb 277 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑖 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑘 ∈ ℤ) → ((𝑘𝑀 ∧ ¬ 𝑘 = 𝑀) ↔ 𝑘 < 𝑀))
7978biimpd 219 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑖 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑘 ∈ ℤ) → ((𝑘𝑀 ∧ ¬ 𝑘 = 𝑀) → 𝑘 < 𝑀))
8079expd 451 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑖 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑘 ∈ ℤ) → (𝑘𝑀 → (¬ 𝑘 = 𝑀𝑘 < 𝑀)))
8180adantld 484 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑖 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑘 ∈ ℤ) → ((𝑖𝑘𝑘𝑀) → (¬ 𝑘 = 𝑀𝑘 < 𝑀)))
8281imp 444 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑖 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ (𝑖𝑘𝑘𝑀)) → (¬ 𝑘 = 𝑀𝑘 < 𝑀))
8350, 82sylbi 207 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑘 ∈ (𝑖...𝑀) → (¬ 𝑘 = 𝑀𝑘 < 𝑀))
8483imp 444 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑘 ∈ (𝑖...𝑀) ∧ ¬ 𝑘 = 𝑀) → 𝑘 < 𝑀)
85843adant1 1122 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑖 ∈ (1..^𝑀) ∧ 𝑘 ∈ (𝑖...𝑀) ∧ ¬ 𝑘 = 𝑀) → 𝑘 < 𝑀)
8670, 85jca 555 . . . . . . . . . . . . . . . . . . . . 21 ((𝑖 ∈ (1..^𝑀) ∧ 𝑘 ∈ (𝑖...𝑀) ∧ ¬ 𝑘 = 𝑀) → (1 ≤ 𝑘𝑘 < 𝑀))
87 elfzelz 12456 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑘 ∈ (𝑖...𝑀) → 𝑘 ∈ ℤ)
88 1zzd 11521 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑘 ∈ (𝑖...𝑀) → 1 ∈ ℤ)
89 elfzel2 12454 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑘 ∈ (𝑖...𝑀) → 𝑀 ∈ ℤ)
9087, 88, 893jca 1379 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑘 ∈ (𝑖...𝑀) → (𝑘 ∈ ℤ ∧ 1 ∈ ℤ ∧ 𝑀 ∈ ℤ))
91903ad2ant2 1126 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑖 ∈ (1..^𝑀) ∧ 𝑘 ∈ (𝑖...𝑀) ∧ ¬ 𝑘 = 𝑀) → (𝑘 ∈ ℤ ∧ 1 ∈ ℤ ∧ 𝑀 ∈ ℤ))
92 elfzo 12587 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑘 ∈ ℤ ∧ 1 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑘 ∈ (1..^𝑀) ↔ (1 ≤ 𝑘𝑘 < 𝑀)))
9391, 92syl 17 . . . . . . . . . . . . . . . . . . . . 21 ((𝑖 ∈ (1..^𝑀) ∧ 𝑘 ∈ (𝑖...𝑀) ∧ ¬ 𝑘 = 𝑀) → (𝑘 ∈ (1..^𝑀) ↔ (1 ≤ 𝑘𝑘 < 𝑀)))
9486, 93mpbird 247 . . . . . . . . . . . . . . . . . . . 20 ((𝑖 ∈ (1..^𝑀) ∧ 𝑘 ∈ (𝑖...𝑀) ∧ ¬ 𝑘 = 𝑀) → 𝑘 ∈ (1..^𝑀))
95943exp 1112 . . . . . . . . . . . . . . . . . . 19 (𝑖 ∈ (1..^𝑀) → (𝑘 ∈ (𝑖...𝑀) → (¬ 𝑘 = 𝑀𝑘 ∈ (1..^𝑀))))
9695ad2antll 767 . . . . . . . . . . . . . . . . . 18 (((𝑃𝑀) ∈ ℝ ∧ (((𝜑 ∧ ¬ 𝑀 = 1) ∧ 𝑀 ∈ ℕ) ∧ 𝑖 ∈ (1..^𝑀))) → (𝑘 ∈ (𝑖...𝑀) → (¬ 𝑘 = 𝑀𝑘 ∈ (1..^𝑀))))
9796imp 444 . . . . . . . . . . . . . . . . 17 ((((𝑃𝑀) ∈ ℝ ∧ (((𝜑 ∧ ¬ 𝑀 = 1) ∧ 𝑀 ∈ ℕ) ∧ 𝑖 ∈ (1..^𝑀))) ∧ 𝑘 ∈ (𝑖...𝑀)) → (¬ 𝑘 = 𝑀𝑘 ∈ (1..^𝑀)))
9897impcom 445 . . . . . . . . . . . . . . . 16 ((¬ 𝑘 = 𝑀 ∧ (((𝑃𝑀) ∈ ℝ ∧ (((𝜑 ∧ ¬ 𝑀 = 1) ∧ 𝑀 ∈ ℕ) ∧ 𝑖 ∈ (1..^𝑀))) ∧ 𝑘 ∈ (𝑖...𝑀))) → 𝑘 ∈ (1..^𝑀))
9945, 49, 98iccpartipre 41784 . . . . . . . . . . . . . . 15 ((¬ 𝑘 = 𝑀 ∧ (((𝑃𝑀) ∈ ℝ ∧ (((𝜑 ∧ ¬ 𝑀 = 1) ∧ 𝑀 ∈ ℕ) ∧ 𝑖 ∈ (1..^𝑀))) ∧ 𝑘 ∈ (𝑖...𝑀))) → (𝑃𝑘) ∈ ℝ)
10099ex 449 . . . . . . . . . . . . . 14 𝑘 = 𝑀 → ((((𝑃𝑀) ∈ ℝ ∧ (((𝜑 ∧ ¬ 𝑀 = 1) ∧ 𝑀 ∈ ℕ) ∧ 𝑖 ∈ (1..^𝑀))) ∧ 𝑘 ∈ (𝑖...𝑀)) → (𝑃𝑘) ∈ ℝ))
10141, 100pm2.61i 176 . . . . . . . . . . . . 13 ((((𝑃𝑀) ∈ ℝ ∧ (((𝜑 ∧ ¬ 𝑀 = 1) ∧ 𝑀 ∈ ℕ) ∧ 𝑖 ∈ (1..^𝑀))) ∧ 𝑘 ∈ (𝑖...𝑀)) → (𝑃𝑘) ∈ ℝ)
10243adantr 472 . . . . . . . . . . . . . . 15 ((((𝑃𝑀) ∈ ℝ ∧ (((𝜑 ∧ ¬ 𝑀 = 1) ∧ 𝑀 ∈ ℕ) ∧ 𝑖 ∈ (1..^𝑀))) ∧ 𝑘 ∈ (𝑖...(𝑀 − 1))) → 𝑀 ∈ ℕ)
10347adantr 472 . . . . . . . . . . . . . . 15 ((((𝑃𝑀) ∈ ℝ ∧ (((𝜑 ∧ ¬ 𝑀 = 1) ∧ 𝑀 ∈ ℕ) ∧ 𝑖 ∈ (1..^𝑀))) ∧ 𝑘 ∈ (𝑖...(𝑀 − 1))) → 𝑃 ∈ (RePart‘𝑀))
104 1eluzge0 11846 . . . . . . . . . . . . . . . . . . . 20 1 ∈ (ℤ‘0)
105 fzoss1 12610 . . . . . . . . . . . . . . . . . . . 20 (1 ∈ (ℤ‘0) → (1..^𝑀) ⊆ (0..^𝑀))
106104, 105mp1i 13 . . . . . . . . . . . . . . . . . . 19 ((𝑖 ∈ (1..^𝑀) ∧ 𝑘 ∈ (𝑖...(𝑀 − 1))) → (1..^𝑀) ⊆ (0..^𝑀))
107 elfzoel2 12584 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑖 ∈ (1..^𝑀) → 𝑀 ∈ ℤ)
108 fzoval 12586 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑀 ∈ ℤ → (𝑖..^𝑀) = (𝑖...(𝑀 − 1)))
109107, 108syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑖 ∈ (1..^𝑀) → (𝑖..^𝑀) = (𝑖...(𝑀 − 1)))
110109eqcomd 2730 . . . . . . . . . . . . . . . . . . . . . 22 (𝑖 ∈ (1..^𝑀) → (𝑖...(𝑀 − 1)) = (𝑖..^𝑀))
111110eleq2d 2789 . . . . . . . . . . . . . . . . . . . . 21 (𝑖 ∈ (1..^𝑀) → (𝑘 ∈ (𝑖...(𝑀 − 1)) ↔ 𝑘 ∈ (𝑖..^𝑀)))
112 elfzouz 12589 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑖 ∈ (1..^𝑀) → 𝑖 ∈ (ℤ‘1))
113 fzoss1 12610 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑖 ∈ (ℤ‘1) → (𝑖..^𝑀) ⊆ (1..^𝑀))
114112, 113syl 17 . . . . . . . . . . . . . . . . . . . . . 22 (𝑖 ∈ (1..^𝑀) → (𝑖..^𝑀) ⊆ (1..^𝑀))
115114sseld 3708 . . . . . . . . . . . . . . . . . . . . 21 (𝑖 ∈ (1..^𝑀) → (𝑘 ∈ (𝑖..^𝑀) → 𝑘 ∈ (1..^𝑀)))
116111, 115sylbid 230 . . . . . . . . . . . . . . . . . . . 20 (𝑖 ∈ (1..^𝑀) → (𝑘 ∈ (𝑖...(𝑀 − 1)) → 𝑘 ∈ (1..^𝑀)))
117116imp 444 . . . . . . . . . . . . . . . . . . 19 ((𝑖 ∈ (1..^𝑀) ∧ 𝑘 ∈ (𝑖...(𝑀 − 1))) → 𝑘 ∈ (1..^𝑀))
118106, 117sseldd 3710 . . . . . . . . . . . . . . . . . 18 ((𝑖 ∈ (1..^𝑀) ∧ 𝑘 ∈ (𝑖...(𝑀 − 1))) → 𝑘 ∈ (0..^𝑀))
119118ex 449 . . . . . . . . . . . . . . . . 17 (𝑖 ∈ (1..^𝑀) → (𝑘 ∈ (𝑖...(𝑀 − 1)) → 𝑘 ∈ (0..^𝑀)))
120119ad2antll 767 . . . . . . . . . . . . . . . 16 (((𝑃𝑀) ∈ ℝ ∧ (((𝜑 ∧ ¬ 𝑀 = 1) ∧ 𝑀 ∈ ℕ) ∧ 𝑖 ∈ (1..^𝑀))) → (𝑘 ∈ (𝑖...(𝑀 − 1)) → 𝑘 ∈ (0..^𝑀)))
121120imp 444 . . . . . . . . . . . . . . 15 ((((𝑃𝑀) ∈ ℝ ∧ (((𝜑 ∧ ¬ 𝑀 = 1) ∧ 𝑀 ∈ ℕ) ∧ 𝑖 ∈ (1..^𝑀))) ∧ 𝑘 ∈ (𝑖...(𝑀 − 1))) → 𝑘 ∈ (0..^𝑀))
122 iccpartimp 41780 . . . . . . . . . . . . . . 15 ((𝑀 ∈ ℕ ∧ 𝑃 ∈ (RePart‘𝑀) ∧ 𝑘 ∈ (0..^𝑀)) → (𝑃 ∈ (ℝ*𝑚 (0...𝑀)) ∧ (𝑃𝑘) < (𝑃‘(𝑘 + 1))))
123102, 103, 121, 122syl3anc 1439 . . . . . . . . . . . . . 14 ((((𝑃𝑀) ∈ ℝ ∧ (((𝜑 ∧ ¬ 𝑀 = 1) ∧ 𝑀 ∈ ℕ) ∧ 𝑖 ∈ (1..^𝑀))) ∧ 𝑘 ∈ (𝑖...(𝑀 − 1))) → (𝑃 ∈ (ℝ*𝑚 (0...𝑀)) ∧ (𝑃𝑘) < (𝑃‘(𝑘 + 1))))
124123simprd 482 . . . . . . . . . . . . 13 ((((𝑃𝑀) ∈ ℝ ∧ (((𝜑 ∧ ¬ 𝑀 = 1) ∧ 𝑀 ∈ ℕ) ∧ 𝑖 ∈ (1..^𝑀))) ∧ 𝑘 ∈ (𝑖...(𝑀 − 1))) → (𝑃𝑘) < (𝑃‘(𝑘 + 1)))
12522, 34, 101, 124smonoord 41768 . . . . . . . . . . . 12 (((𝑃𝑀) ∈ ℝ ∧ (((𝜑 ∧ ¬ 𝑀 = 1) ∧ 𝑀 ∈ ℕ) ∧ 𝑖 ∈ (1..^𝑀))) → (𝑃𝑖) < (𝑃𝑀))
126125ex 449 . . . . . . . . . . 11 ((𝑃𝑀) ∈ ℝ → ((((𝜑 ∧ ¬ 𝑀 = 1) ∧ 𝑀 ∈ ℕ) ∧ 𝑖 ∈ (1..^𝑀)) → (𝑃𝑖) < (𝑃𝑀)))
127 simpr 479 . . . . . . . . . . . . . 14 ((((𝜑 ∧ ¬ 𝑀 = 1) ∧ 𝑀 ∈ ℕ) ∧ 𝑖 ∈ (1..^𝑀)) → 𝑖 ∈ (1..^𝑀))
12842, 46, 127iccpartipre 41784 . . . . . . . . . . . . 13 ((((𝜑 ∧ ¬ 𝑀 = 1) ∧ 𝑀 ∈ ℕ) ∧ 𝑖 ∈ (1..^𝑀)) → (𝑃𝑖) ∈ ℝ)
129 ltpnf 12068 . . . . . . . . . . . . 13 ((𝑃𝑖) ∈ ℝ → (𝑃𝑖) < +∞)
130128, 129syl 17 . . . . . . . . . . . 12 ((((𝜑 ∧ ¬ 𝑀 = 1) ∧ 𝑀 ∈ ℕ) ∧ 𝑖 ∈ (1..^𝑀)) → (𝑃𝑖) < +∞)
131 breq2 4764 . . . . . . . . . . . 12 ((𝑃𝑀) = +∞ → ((𝑃𝑖) < (𝑃𝑀) ↔ (𝑃𝑖) < +∞))
132130, 131syl5ibr 236 . . . . . . . . . . 11 ((𝑃𝑀) = +∞ → ((((𝜑 ∧ ¬ 𝑀 = 1) ∧ 𝑀 ∈ ℕ) ∧ 𝑖 ∈ (1..^𝑀)) → (𝑃𝑖) < (𝑃𝑀)))
13342adantl 473 . . . . . . . . . . . . . . 15 (((𝑃𝑀) = -∞ ∧ (((𝜑 ∧ ¬ 𝑀 = 1) ∧ 𝑀 ∈ ℕ) ∧ 𝑖 ∈ (1..^𝑀))) → 𝑀 ∈ ℕ)
13446adantl 473 . . . . . . . . . . . . . . 15 (((𝑃𝑀) = -∞ ∧ (((𝜑 ∧ ¬ 𝑀 = 1) ∧ 𝑀 ∈ ℕ) ∧ 𝑖 ∈ (1..^𝑀))) → 𝑃 ∈ (RePart‘𝑀))
135 elfzofz 12600 . . . . . . . . . . . . . . . . 17 (𝑖 ∈ (1..^𝑀) → 𝑖 ∈ (1...𝑀))
136135ad2antll 767 . . . . . . . . . . . . . . . 16 (((𝑃𝑀) = -∞ ∧ (((𝜑 ∧ ¬ 𝑀 = 1) ∧ 𝑀 ∈ ℕ) ∧ 𝑖 ∈ (1..^𝑀))) → 𝑖 ∈ (1...𝑀))
137 elfzubelfz 12467 . . . . . . . . . . . . . . . 16 (𝑖 ∈ (1...𝑀) → 𝑀 ∈ (1...𝑀))
138136, 137syl 17 . . . . . . . . . . . . . . 15 (((𝑃𝑀) = -∞ ∧ (((𝜑 ∧ ¬ 𝑀 = 1) ∧ 𝑀 ∈ ℕ) ∧ 𝑖 ∈ (1..^𝑀))) → 𝑀 ∈ (1...𝑀))
139133, 134, 138iccpartgtprec 41783 . . . . . . . . . . . . . 14 (((𝑃𝑀) = -∞ ∧ (((𝜑 ∧ ¬ 𝑀 = 1) ∧ 𝑀 ∈ ℕ) ∧ 𝑖 ∈ (1..^𝑀))) → (𝑃‘(𝑀 − 1)) < (𝑃𝑀))
140 breq2 4764 . . . . . . . . . . . . . . . 16 (-∞ = (𝑃𝑀) → ((𝑃‘(𝑀 − 1)) < -∞ ↔ (𝑃‘(𝑀 − 1)) < (𝑃𝑀)))
141140eqcoms 2732 . . . . . . . . . . . . . . 15 ((𝑃𝑀) = -∞ → ((𝑃‘(𝑀 − 1)) < -∞ ↔ (𝑃‘(𝑀 − 1)) < (𝑃𝑀)))
142141adantr 472 . . . . . . . . . . . . . 14 (((𝑃𝑀) = -∞ ∧ (((𝜑 ∧ ¬ 𝑀 = 1) ∧ 𝑀 ∈ ℕ) ∧ 𝑖 ∈ (1..^𝑀))) → ((𝑃‘(𝑀 − 1)) < -∞ ↔ (𝑃‘(𝑀 − 1)) < (𝑃𝑀)))
143139, 142mpbird 247 . . . . . . . . . . . . 13 (((𝑃𝑀) = -∞ ∧ (((𝜑 ∧ ¬ 𝑀 = 1) ∧ 𝑀 ∈ ℕ) ∧ 𝑖 ∈ (1..^𝑀))) → (𝑃‘(𝑀 − 1)) < -∞)
14415adantl 473 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ ¬ 𝑀 = 1) ∧ 𝑀 ∈ ℕ) → 𝑀 ∈ ℕ0)
145144adantr 472 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ ¬ 𝑀 = 1) ∧ 𝑀 ∈ ℕ) ∧ 𝑖 ∈ (1..^𝑀)) → 𝑀 ∈ ℕ0)
146 nnne0 11166 . . . . . . . . . . . . . . . . . . . . . 22 (𝑀 ∈ ℕ → 𝑀 ≠ 0)
147146adantl 473 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ ¬ 𝑀 = 1) ∧ 𝑀 ∈ ℕ) → 𝑀 ≠ 0)
148 df-ne 2897 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑀 ≠ 1 ↔ ¬ 𝑀 = 1)
149148biimpri 218 . . . . . . . . . . . . . . . . . . . . . . 23 𝑀 = 1 → 𝑀 ≠ 1)
150149adantl 473 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ ¬ 𝑀 = 1) → 𝑀 ≠ 1)
151150adantr 472 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ ¬ 𝑀 = 1) ∧ 𝑀 ∈ ℕ) → 𝑀 ≠ 1)
152144, 147, 1513jca 1379 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ ¬ 𝑀 = 1) ∧ 𝑀 ∈ ℕ) → (𝑀 ∈ ℕ0𝑀 ≠ 0 ∧ 𝑀 ≠ 1))
153152adantr 472 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ ¬ 𝑀 = 1) ∧ 𝑀 ∈ ℕ) ∧ 𝑖 ∈ (1..^𝑀)) → (𝑀 ∈ ℕ0𝑀 ≠ 0 ∧ 𝑀 ≠ 1))
154 nn0n0n1ge2 11471 . . . . . . . . . . . . . . . . . . 19 ((𝑀 ∈ ℕ0𝑀 ≠ 0 ∧ 𝑀 ≠ 1) → 2 ≤ 𝑀)
155153, 154syl 17 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ ¬ 𝑀 = 1) ∧ 𝑀 ∈ ℕ) ∧ 𝑖 ∈ (1..^𝑀)) → 2 ≤ 𝑀)
156145, 155jca 555 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ ¬ 𝑀 = 1) ∧ 𝑀 ∈ ℕ) ∧ 𝑖 ∈ (1..^𝑀)) → (𝑀 ∈ ℕ0 ∧ 2 ≤ 𝑀))
157156adantl 473 . . . . . . . . . . . . . . . 16 (((𝑃𝑀) = -∞ ∧ (((𝜑 ∧ ¬ 𝑀 = 1) ∧ 𝑀 ∈ ℕ) ∧ 𝑖 ∈ (1..^𝑀))) → (𝑀 ∈ ℕ0 ∧ 2 ≤ 𝑀))
158 ige2m1fz 12544 . . . . . . . . . . . . . . . 16 ((𝑀 ∈ ℕ0 ∧ 2 ≤ 𝑀) → (𝑀 − 1) ∈ (0...𝑀))
159157, 158syl 17 . . . . . . . . . . . . . . 15 (((𝑃𝑀) = -∞ ∧ (((𝜑 ∧ ¬ 𝑀 = 1) ∧ 𝑀 ∈ ℕ) ∧ 𝑖 ∈ (1..^𝑀))) → (𝑀 − 1) ∈ (0...𝑀))
160133, 134, 159iccpartxr 41782 . . . . . . . . . . . . . 14 (((𝑃𝑀) = -∞ ∧ (((𝜑 ∧ ¬ 𝑀 = 1) ∧ 𝑀 ∈ ℕ) ∧ 𝑖 ∈ (1..^𝑀))) → (𝑃‘(𝑀 − 1)) ∈ ℝ*)
161 nltmnf 12077 . . . . . . . . . . . . . 14 ((𝑃‘(𝑀 − 1)) ∈ ℝ* → ¬ (𝑃‘(𝑀 − 1)) < -∞)
162160, 161syl 17 . . . . . . . . . . . . 13 (((𝑃𝑀) = -∞ ∧ (((𝜑 ∧ ¬ 𝑀 = 1) ∧ 𝑀 ∈ ℕ) ∧ 𝑖 ∈ (1..^𝑀))) → ¬ (𝑃‘(𝑀 − 1)) < -∞)
163143, 162pm2.21dd 186 . . . . . . . . . . . 12 (((𝑃𝑀) = -∞ ∧ (((𝜑 ∧ ¬ 𝑀 = 1) ∧ 𝑀 ∈ ℕ) ∧ 𝑖 ∈ (1..^𝑀))) → (𝑃𝑖) < (𝑃𝑀))
164163ex 449 . . . . . . . . . . 11 ((𝑃𝑀) = -∞ → ((((𝜑 ∧ ¬ 𝑀 = 1) ∧ 𝑀 ∈ ℕ) ∧ 𝑖 ∈ (1..^𝑀)) → (𝑃𝑖) < (𝑃𝑀)))
165126, 132, 1643jaoi 1504 . . . . . . . . . 10 (((𝑃𝑀) ∈ ℝ ∨ (𝑃𝑀) = +∞ ∨ (𝑃𝑀) = -∞) → ((((𝜑 ∧ ¬ 𝑀 = 1) ∧ 𝑀 ∈ ℕ) ∧ 𝑖 ∈ (1..^𝑀)) → (𝑃𝑖) < (𝑃𝑀)))
166165impl 651 . . . . . . . . 9 (((((𝑃𝑀) ∈ ℝ ∨ (𝑃𝑀) = +∞ ∨ (𝑃𝑀) = -∞) ∧ ((𝜑 ∧ ¬ 𝑀 = 1) ∧ 𝑀 ∈ ℕ)) ∧ 𝑖 ∈ (1..^𝑀)) → (𝑃𝑖) < (𝑃𝑀))
167166ralrimiva 3068 . . . . . . . 8 ((((𝑃𝑀) ∈ ℝ ∨ (𝑃𝑀) = +∞ ∨ (𝑃𝑀) = -∞) ∧ ((𝜑 ∧ ¬ 𝑀 = 1) ∧ 𝑀 ∈ ℕ)) → ∀𝑖 ∈ (1..^𝑀)(𝑃𝑖) < (𝑃𝑀))
168167ex 449 . . . . . . 7 (((𝑃𝑀) ∈ ℝ ∨ (𝑃𝑀) = +∞ ∨ (𝑃𝑀) = -∞) → (((𝜑 ∧ ¬ 𝑀 = 1) ∧ 𝑀 ∈ ℕ) → ∀𝑖 ∈ (1..^𝑀)(𝑃𝑖) < (𝑃𝑀)))
16920, 168sylbi 207 . . . . . 6 ((𝑃𝑀) ∈ ℝ* → (((𝜑 ∧ ¬ 𝑀 = 1) ∧ 𝑀 ∈ ℕ) → ∀𝑖 ∈ (1..^𝑀)(𝑃𝑖) < (𝑃𝑀)))
17019, 169mpcom 38 . . . . 5 (((𝜑 ∧ ¬ 𝑀 = 1) ∧ 𝑀 ∈ ℕ) → ∀𝑖 ∈ (1..^𝑀)(𝑃𝑖) < (𝑃𝑀))
171170ex 449 . . . 4 ((𝜑 ∧ ¬ 𝑀 = 1) → (𝑀 ∈ ℕ → ∀𝑖 ∈ (1..^𝑀)(𝑃𝑖) < (𝑃𝑀)))
172171expcom 450 . . 3 𝑀 = 1 → (𝜑 → (𝑀 ∈ ℕ → ∀𝑖 ∈ (1..^𝑀)(𝑃𝑖) < (𝑃𝑀))))
17310, 172pm2.61i 176 . 2 (𝜑 → (𝑀 ∈ ℕ → ∀𝑖 ∈ (1..^𝑀)(𝑃𝑖) < (𝑃𝑀)))
1741, 173mpd 15 1 (𝜑 → ∀𝑖 ∈ (1..^𝑀)(𝑃𝑖) < (𝑃𝑀))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 196   ∧ wa 383   ∨ w3o 1071   ∧ w3a 1072   = wceq 1596   ∈ wcel 2103   ≠ wne 2896  ∀wral 3014   ⊆ wss 3680  ∅c0 4023   class class class wbr 4760  ‘cfv 6001  (class class class)co 6765   ↑𝑚 cmap 7974  ℝcr 10048  0cc0 10049  1c1 10050   + caddc 10052  +∞cpnf 10184  -∞cmnf 10185  ℝ*cxr 10186   < clt 10187   ≤ cle 10188   − cmin 10379  ℕcn 11133  2c2 11183  ℕ0cn0 11405  ℤcz 11490  ℤ≥cuz 11800  ...cfz 12440  ..^cfzo 12580  RePartciccp 41776 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1835  ax-4 1850  ax-5 1952  ax-6 2018  ax-7 2054  ax-8 2105  ax-9 2112  ax-10 2132  ax-11 2147  ax-12 2160  ax-13 2355  ax-ext 2704  ax-sep 4889  ax-nul 4897  ax-pow 4948  ax-pr 5011  ax-un 7066  ax-cnex 10105  ax-resscn 10106  ax-1cn 10107  ax-icn 10108  ax-addcl 10109  ax-addrcl 10110  ax-mulcl 10111  ax-mulrcl 10112  ax-mulcom 10113  ax-addass 10114  ax-mulass 10115  ax-distr 10116  ax-i2m1 10117  ax-1ne0 10118  ax-1rid 10119  ax-rnegex 10120  ax-rrecex 10121  ax-cnre 10122  ax-pre-lttri 10123  ax-pre-lttrn 10124  ax-pre-ltadd 10125  ax-pre-mulgt0 10126 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1599  df-ex 1818  df-nf 1823  df-sb 2011  df-eu 2575  df-mo 2576  df-clab 2711  df-cleq 2717  df-clel 2720  df-nfc 2855  df-ne 2897  df-nel 3000  df-ral 3019  df-rex 3020  df-reu 3021  df-rab 3023  df-v 3306  df-sbc 3542  df-csb 3640  df-dif 3683  df-un 3685  df-in 3687  df-ss 3694  df-pss 3696  df-nul 4024  df-if 4195  df-pw 4268  df-sn 4286  df-pr 4288  df-tp 4290  df-op 4292  df-uni 4545  df-iun 4630  df-br 4761  df-opab 4821  df-mpt 4838  df-tr 4861  df-id 5128  df-eprel 5133  df-po 5139  df-so 5140  df-fr 5177  df-we 5179  df-xp 5224  df-rel 5225  df-cnv 5226  df-co 5227  df-dm 5228  df-rn 5229  df-res 5230  df-ima 5231  df-pred 5793  df-ord 5839  df-on 5840  df-lim 5841  df-suc 5842  df-iota 5964  df-fun 6003  df-fn 6004  df-f 6005  df-f1 6006  df-fo 6007  df-f1o 6008  df-fv 6009  df-riota 6726  df-ov 6768  df-oprab 6769  df-mpt2 6770  df-om 7183  df-1st 7285  df-2nd 7286  df-wrecs 7527  df-recs 7588  df-rdg 7626  df-er 7862  df-map 7976  df-en 8073  df-dom 8074  df-sdom 8075  df-pnf 10189  df-mnf 10190  df-xr 10191  df-ltxr 10192  df-le 10193  df-sub 10381  df-neg 10382  df-nn 11134  df-2 11192  df-n0 11406  df-z 11491  df-uz 11801  df-fz 12441  df-fzo 12581  df-iccp 41777 This theorem is referenced by:  iccpartlt  41787  iccpartltu  41788  iccpartgt  41790
 Copyright terms: Public domain W3C validator