Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iccpartgtl Structured version   Visualization version   GIF version

Theorem iccpartgtl 41880
Description: If there is a partition, then all intermediate points and the upper bound are strictly greater than the lower bound. (Contributed by AV, 14-Jul-2020.)
Hypotheses
Ref Expression
iccpartgtprec.m (𝜑𝑀 ∈ ℕ)
iccpartgtprec.p (𝜑𝑃 ∈ (RePart‘𝑀))
Assertion
Ref Expression
iccpartgtl (𝜑 → ∀𝑖 ∈ (1...𝑀)(𝑃‘0) < (𝑃𝑖))
Distinct variable groups:   𝑖,𝑀   𝑃,𝑖   𝜑,𝑖

Proof of Theorem iccpartgtl
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 iccpartgtprec.m . . . . . . 7 (𝜑𝑀 ∈ ℕ)
2 elnnuz 11925 . . . . . . 7 (𝑀 ∈ ℕ ↔ 𝑀 ∈ (ℤ‘1))
31, 2sylib 208 . . . . . 6 (𝜑𝑀 ∈ (ℤ‘1))
4 fzisfzounsn 12787 . . . . . 6 (𝑀 ∈ (ℤ‘1) → (1...𝑀) = ((1..^𝑀) ∪ {𝑀}))
53, 4syl 17 . . . . 5 (𝜑 → (1...𝑀) = ((1..^𝑀) ∪ {𝑀}))
65eleq2d 2835 . . . 4 (𝜑 → (𝑖 ∈ (1...𝑀) ↔ 𝑖 ∈ ((1..^𝑀) ∪ {𝑀})))
7 elun 3902 . . . . 5 (𝑖 ∈ ((1..^𝑀) ∪ {𝑀}) ↔ (𝑖 ∈ (1..^𝑀) ∨ 𝑖 ∈ {𝑀}))
87a1i 11 . . . 4 (𝜑 → (𝑖 ∈ ((1..^𝑀) ∪ {𝑀}) ↔ (𝑖 ∈ (1..^𝑀) ∨ 𝑖 ∈ {𝑀})))
9 velsn 4330 . . . . . 6 (𝑖 ∈ {𝑀} ↔ 𝑖 = 𝑀)
109a1i 11 . . . . 5 (𝜑 → (𝑖 ∈ {𝑀} ↔ 𝑖 = 𝑀))
1110orbi2d 880 . . . 4 (𝜑 → ((𝑖 ∈ (1..^𝑀) ∨ 𝑖 ∈ {𝑀}) ↔ (𝑖 ∈ (1..^𝑀) ∨ 𝑖 = 𝑀)))
126, 8, 113bitrd 294 . . 3 (𝜑 → (𝑖 ∈ (1...𝑀) ↔ (𝑖 ∈ (1..^𝑀) ∨ 𝑖 = 𝑀)))
13 fveq2 6332 . . . . . . . 8 (𝑘 = 𝑖 → (𝑃𝑘) = (𝑃𝑖))
1413breq2d 4796 . . . . . . 7 (𝑘 = 𝑖 → ((𝑃‘0) < (𝑃𝑘) ↔ (𝑃‘0) < (𝑃𝑖)))
1514rspccv 3455 . . . . . 6 (∀𝑘 ∈ (1..^𝑀)(𝑃‘0) < (𝑃𝑘) → (𝑖 ∈ (1..^𝑀) → (𝑃‘0) < (𝑃𝑖)))
16 iccpartgtprec.p . . . . . . 7 (𝜑𝑃 ∈ (RePart‘𝑀))
171, 16iccpartigtl 41877 . . . . . 6 (𝜑 → ∀𝑘 ∈ (1..^𝑀)(𝑃‘0) < (𝑃𝑘))
1815, 17syl11 33 . . . . 5 (𝑖 ∈ (1..^𝑀) → (𝜑 → (𝑃‘0) < (𝑃𝑖)))
191, 16iccpartlt 41878 . . . . . . . 8 (𝜑 → (𝑃‘0) < (𝑃𝑀))
2019adantl 467 . . . . . . 7 ((𝑖 = 𝑀𝜑) → (𝑃‘0) < (𝑃𝑀))
21 fveq2 6332 . . . . . . . 8 (𝑖 = 𝑀 → (𝑃𝑖) = (𝑃𝑀))
2221adantr 466 . . . . . . 7 ((𝑖 = 𝑀𝜑) → (𝑃𝑖) = (𝑃𝑀))
2320, 22breqtrrd 4812 . . . . . 6 ((𝑖 = 𝑀𝜑) → (𝑃‘0) < (𝑃𝑖))
2423ex 397 . . . . 5 (𝑖 = 𝑀 → (𝜑 → (𝑃‘0) < (𝑃𝑖)))
2518, 24jaoi 837 . . . 4 ((𝑖 ∈ (1..^𝑀) ∨ 𝑖 = 𝑀) → (𝜑 → (𝑃‘0) < (𝑃𝑖)))
2625com12 32 . . 3 (𝜑 → ((𝑖 ∈ (1..^𝑀) ∨ 𝑖 = 𝑀) → (𝑃‘0) < (𝑃𝑖)))
2712, 26sylbid 230 . 2 (𝜑 → (𝑖 ∈ (1...𝑀) → (𝑃‘0) < (𝑃𝑖)))
2827ralrimiv 3113 1 (𝜑 → ∀𝑖 ∈ (1...𝑀)(𝑃‘0) < (𝑃𝑖))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 382  wo 826   = wceq 1630  wcel 2144  wral 3060  cun 3719  {csn 4314   class class class wbr 4784  cfv 6031  (class class class)co 6792  0cc0 10137  1c1 10138   < clt 10275  cn 11221  cuz 11887  ...cfz 12532  ..^cfzo 12672  RePartciccp 41867
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1869  ax-4 1884  ax-5 1990  ax-6 2056  ax-7 2092  ax-8 2146  ax-9 2153  ax-10 2173  ax-11 2189  ax-12 2202  ax-13 2407  ax-ext 2750  ax-sep 4912  ax-nul 4920  ax-pow 4971  ax-pr 5034  ax-un 7095  ax-cnex 10193  ax-resscn 10194  ax-1cn 10195  ax-icn 10196  ax-addcl 10197  ax-addrcl 10198  ax-mulcl 10199  ax-mulrcl 10200  ax-mulcom 10201  ax-addass 10202  ax-mulass 10203  ax-distr 10204  ax-i2m1 10205  ax-1ne0 10206  ax-1rid 10207  ax-rnegex 10208  ax-rrecex 10209  ax-cnre 10210  ax-pre-lttri 10211  ax-pre-lttrn 10212  ax-pre-ltadd 10213  ax-pre-mulgt0 10214
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 827  df-3or 1071  df-3an 1072  df-tru 1633  df-ex 1852  df-nf 1857  df-sb 2049  df-eu 2621  df-mo 2622  df-clab 2757  df-cleq 2763  df-clel 2766  df-nfc 2901  df-ne 2943  df-nel 3046  df-ral 3065  df-rex 3066  df-reu 3067  df-rab 3069  df-v 3351  df-sbc 3586  df-csb 3681  df-dif 3724  df-un 3726  df-in 3728  df-ss 3735  df-pss 3737  df-nul 4062  df-if 4224  df-pw 4297  df-sn 4315  df-pr 4317  df-tp 4319  df-op 4321  df-uni 4573  df-iun 4654  df-br 4785  df-opab 4845  df-mpt 4862  df-tr 4885  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-riota 6753  df-ov 6795  df-oprab 6796  df-mpt2 6797  df-om 7212  df-1st 7314  df-2nd 7315  df-wrecs 7558  df-recs 7620  df-rdg 7658  df-er 7895  df-map 8010  df-en 8109  df-dom 8110  df-sdom 8111  df-pnf 10277  df-mnf 10278  df-xr 10279  df-ltxr 10280  df-le 10281  df-sub 10469  df-neg 10470  df-nn 11222  df-2 11280  df-n0 11494  df-z 11579  df-uz 11888  df-fz 12533  df-fzo 12673  df-iccp 41868
This theorem is referenced by:  iccpartgel  41883
  Copyright terms: Public domain W3C validator