Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iccpartf Structured version   Visualization version   GIF version

Theorem iccpartf 41692
Description: The range of the partition is between its starting point and its ending point. Corresponds to fourierdlem15 40657 in GS's mathbox. (Contributed by Glauco Siliprandi, 11-Dec-2019.) (Revised by AV, 14-Jul-2020.)
Hypotheses
Ref Expression
iccpartgtprec.m (𝜑𝑀 ∈ ℕ)
iccpartgtprec.p (𝜑𝑃 ∈ (RePart‘𝑀))
Assertion
Ref Expression
iccpartf (𝜑𝑃:(0...𝑀)⟶((𝑃‘0)[,](𝑃𝑀)))

Proof of Theorem iccpartf
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 iccpartgtprec.m . . 3 (𝜑𝑀 ∈ ℕ)
2 iccpartgtprec.p . . 3 (𝜑𝑃 ∈ (RePart‘𝑀))
3 iccpart 41677 . . . 4 (𝑀 ∈ ℕ → (𝑃 ∈ (RePart‘𝑀) ↔ (𝑃 ∈ (ℝ*𝑚 (0...𝑀)) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑃𝑖) < (𝑃‘(𝑖 + 1)))))
4 elmapfn 7922 . . . . 5 (𝑃 ∈ (ℝ*𝑚 (0...𝑀)) → 𝑃 Fn (0...𝑀))
54adantr 480 . . . 4 ((𝑃 ∈ (ℝ*𝑚 (0...𝑀)) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑃𝑖) < (𝑃‘(𝑖 + 1))) → 𝑃 Fn (0...𝑀))
63, 5syl6bi 243 . . 3 (𝑀 ∈ ℕ → (𝑃 ∈ (RePart‘𝑀) → 𝑃 Fn (0...𝑀)))
71, 2, 6sylc 65 . 2 (𝜑𝑃 Fn (0...𝑀))
81, 2iccpartrn 41691 . 2 (𝜑 → ran 𝑃 ⊆ ((𝑃‘0)[,](𝑃𝑀)))
9 df-f 5930 . 2 (𝑃:(0...𝑀)⟶((𝑃‘0)[,](𝑃𝑀)) ↔ (𝑃 Fn (0...𝑀) ∧ ran 𝑃 ⊆ ((𝑃‘0)[,](𝑃𝑀))))
107, 8, 9sylanbrc 699 1 (𝜑𝑃:(0...𝑀)⟶((𝑃‘0)[,](𝑃𝑀)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  wcel 2030  wral 2941  wss 3607   class class class wbr 4685  ran crn 5144   Fn wfn 5921  wf 5922  cfv 5926  (class class class)co 6690  𝑚 cmap 7899  0cc0 9974  1c1 9975   + caddc 9977  *cxr 10111   < clt 10112  cn 11058  [,]cicc 12216  ...cfz 12364  ..^cfzo 12504  RePartciccp 41674
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-er 7787  df-map 7901  df-en 7998  df-dom 7999  df-sdom 8000  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-nn 11059  df-2 11117  df-n0 11331  df-z 11416  df-uz 11726  df-icc 12220  df-fz 12365  df-fzo 12505  df-iccp 41675
This theorem is referenced by:  iccpartel  41693
  Copyright terms: Public domain W3C validator