![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > iccpart | Structured version Visualization version GIF version |
Description: A special partition. Corresponds to fourierdlem2 40644 in GS's mathbox. (Contributed by AV, 9-Jul-2020.) |
Ref | Expression |
---|---|
iccpart | ⊢ (𝑀 ∈ ℕ → (𝑃 ∈ (RePart‘𝑀) ↔ (𝑃 ∈ (ℝ* ↑𝑚 (0...𝑀)) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑃‘𝑖) < (𝑃‘(𝑖 + 1))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iccpval 41676 | . . 3 ⊢ (𝑀 ∈ ℕ → (RePart‘𝑀) = {𝑝 ∈ (ℝ* ↑𝑚 (0...𝑀)) ∣ ∀𝑖 ∈ (0..^𝑀)(𝑝‘𝑖) < (𝑝‘(𝑖 + 1))}) | |
2 | 1 | eleq2d 2716 | . 2 ⊢ (𝑀 ∈ ℕ → (𝑃 ∈ (RePart‘𝑀) ↔ 𝑃 ∈ {𝑝 ∈ (ℝ* ↑𝑚 (0...𝑀)) ∣ ∀𝑖 ∈ (0..^𝑀)(𝑝‘𝑖) < (𝑝‘(𝑖 + 1))})) |
3 | fveq1 6228 | . . . . 5 ⊢ (𝑝 = 𝑃 → (𝑝‘𝑖) = (𝑃‘𝑖)) | |
4 | fveq1 6228 | . . . . 5 ⊢ (𝑝 = 𝑃 → (𝑝‘(𝑖 + 1)) = (𝑃‘(𝑖 + 1))) | |
5 | 3, 4 | breq12d 4698 | . . . 4 ⊢ (𝑝 = 𝑃 → ((𝑝‘𝑖) < (𝑝‘(𝑖 + 1)) ↔ (𝑃‘𝑖) < (𝑃‘(𝑖 + 1)))) |
6 | 5 | ralbidv 3015 | . . 3 ⊢ (𝑝 = 𝑃 → (∀𝑖 ∈ (0..^𝑀)(𝑝‘𝑖) < (𝑝‘(𝑖 + 1)) ↔ ∀𝑖 ∈ (0..^𝑀)(𝑃‘𝑖) < (𝑃‘(𝑖 + 1)))) |
7 | 6 | elrab 3396 | . 2 ⊢ (𝑃 ∈ {𝑝 ∈ (ℝ* ↑𝑚 (0...𝑀)) ∣ ∀𝑖 ∈ (0..^𝑀)(𝑝‘𝑖) < (𝑝‘(𝑖 + 1))} ↔ (𝑃 ∈ (ℝ* ↑𝑚 (0...𝑀)) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑃‘𝑖) < (𝑃‘(𝑖 + 1)))) |
8 | 2, 7 | syl6bb 276 | 1 ⊢ (𝑀 ∈ ℕ → (𝑃 ∈ (RePart‘𝑀) ↔ (𝑃 ∈ (ℝ* ↑𝑚 (0...𝑀)) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑃‘𝑖) < (𝑃‘(𝑖 + 1))))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 383 = wceq 1523 ∈ wcel 2030 ∀wral 2941 {crab 2945 class class class wbr 4685 ‘cfv 5926 (class class class)co 6690 ↑𝑚 cmap 7899 0cc0 9974 1c1 9975 + caddc 9977 ℝ*cxr 10111 < clt 10112 ℕcn 11058 ...cfz 12364 ..^cfzo 12504 RePartciccp 41674 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-sep 4814 ax-nul 4822 ax-pr 4936 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ral 2946 df-rex 2947 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-nul 3949 df-if 4120 df-sn 4211 df-pr 4213 df-op 4217 df-uni 4469 df-br 4686 df-opab 4746 df-mpt 4763 df-id 5053 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-iota 5889 df-fun 5928 df-fv 5934 df-ov 6693 df-iccp 41675 |
This theorem is referenced by: iccpartimp 41678 iccpartres 41679 iccpartxr 41680 iccpartrn 41691 iccpartf 41692 iccpartnel 41699 |
Copyright terms: Public domain | W3C validator |