Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iccpart Structured version   Visualization version   GIF version

Theorem iccpart 41677
Description: A special partition. Corresponds to fourierdlem2 40644 in GS's mathbox. (Contributed by AV, 9-Jul-2020.)
Assertion
Ref Expression
iccpart (𝑀 ∈ ℕ → (𝑃 ∈ (RePart‘𝑀) ↔ (𝑃 ∈ (ℝ*𝑚 (0...𝑀)) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑃𝑖) < (𝑃‘(𝑖 + 1)))))
Distinct variable groups:   𝑖,𝑀   𝑃,𝑖

Proof of Theorem iccpart
Dummy variable 𝑝 is distinct from all other variables.
StepHypRef Expression
1 iccpval 41676 . . 3 (𝑀 ∈ ℕ → (RePart‘𝑀) = {𝑝 ∈ (ℝ*𝑚 (0...𝑀)) ∣ ∀𝑖 ∈ (0..^𝑀)(𝑝𝑖) < (𝑝‘(𝑖 + 1))})
21eleq2d 2716 . 2 (𝑀 ∈ ℕ → (𝑃 ∈ (RePart‘𝑀) ↔ 𝑃 ∈ {𝑝 ∈ (ℝ*𝑚 (0...𝑀)) ∣ ∀𝑖 ∈ (0..^𝑀)(𝑝𝑖) < (𝑝‘(𝑖 + 1))}))
3 fveq1 6228 . . . . 5 (𝑝 = 𝑃 → (𝑝𝑖) = (𝑃𝑖))
4 fveq1 6228 . . . . 5 (𝑝 = 𝑃 → (𝑝‘(𝑖 + 1)) = (𝑃‘(𝑖 + 1)))
53, 4breq12d 4698 . . . 4 (𝑝 = 𝑃 → ((𝑝𝑖) < (𝑝‘(𝑖 + 1)) ↔ (𝑃𝑖) < (𝑃‘(𝑖 + 1))))
65ralbidv 3015 . . 3 (𝑝 = 𝑃 → (∀𝑖 ∈ (0..^𝑀)(𝑝𝑖) < (𝑝‘(𝑖 + 1)) ↔ ∀𝑖 ∈ (0..^𝑀)(𝑃𝑖) < (𝑃‘(𝑖 + 1))))
76elrab 3396 . 2 (𝑃 ∈ {𝑝 ∈ (ℝ*𝑚 (0...𝑀)) ∣ ∀𝑖 ∈ (0..^𝑀)(𝑝𝑖) < (𝑝‘(𝑖 + 1))} ↔ (𝑃 ∈ (ℝ*𝑚 (0...𝑀)) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑃𝑖) < (𝑃‘(𝑖 + 1))))
82, 7syl6bb 276 1 (𝑀 ∈ ℕ → (𝑃 ∈ (RePart‘𝑀) ↔ (𝑃 ∈ (ℝ*𝑚 (0...𝑀)) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑃𝑖) < (𝑃‘(𝑖 + 1)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383   = wceq 1523  wcel 2030  wral 2941  {crab 2945   class class class wbr 4685  cfv 5926  (class class class)co 6690  𝑚 cmap 7899  0cc0 9974  1c1 9975   + caddc 9977  *cxr 10111   < clt 10112  cn 11058  ...cfz 12364  ..^cfzo 12504  RePartciccp 41674
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pr 4936
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ral 2946  df-rex 2947  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-nul 3949  df-if 4120  df-sn 4211  df-pr 4213  df-op 4217  df-uni 4469  df-br 4686  df-opab 4746  df-mpt 4763  df-id 5053  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-iota 5889  df-fun 5928  df-fv 5934  df-ov 6693  df-iccp 41675
This theorem is referenced by:  iccpartimp  41678  iccpartres  41679  iccpartxr  41680  iccpartrn  41691  iccpartf  41692  iccpartnel  41699
  Copyright terms: Public domain W3C validator