![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > iccleub | Structured version Visualization version GIF version |
Description: An element of a closed interval is less than or equal to its upper bound. (Contributed by Jeff Hankins, 14-Jul-2009.) |
Ref | Expression |
---|---|
iccleub | ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ (𝐴[,]𝐵)) → 𝐶 ≤ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elicc1 12423 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐶 ∈ (𝐴[,]𝐵) ↔ (𝐶 ∈ ℝ* ∧ 𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵))) | |
2 | simp3 1131 | . . 3 ⊢ ((𝐶 ∈ ℝ* ∧ 𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵) → 𝐶 ≤ 𝐵) | |
3 | 1, 2 | syl6bi 243 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐶 ∈ (𝐴[,]𝐵) → 𝐶 ≤ 𝐵)) |
4 | 3 | 3impia 1108 | 1 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ (𝐴[,]𝐵)) → 𝐶 ≤ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 382 ∧ w3a 1070 ∈ wcel 2144 class class class wbr 4784 (class class class)co 6792 ℝ*cxr 10274 ≤ cle 10276 [,]cicc 12382 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1869 ax-4 1884 ax-5 1990 ax-6 2056 ax-7 2092 ax-8 2146 ax-9 2153 ax-10 2173 ax-11 2189 ax-12 2202 ax-13 2407 ax-ext 2750 ax-sep 4912 ax-nul 4920 ax-pr 5034 ax-un 7095 ax-cnex 10193 ax-resscn 10194 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 827 df-3an 1072 df-tru 1633 df-ex 1852 df-nf 1857 df-sb 2049 df-eu 2621 df-mo 2622 df-clab 2757 df-cleq 2763 df-clel 2766 df-nfc 2901 df-ral 3065 df-rex 3066 df-rab 3069 df-v 3351 df-sbc 3586 df-dif 3724 df-un 3726 df-in 3728 df-ss 3735 df-nul 4062 df-if 4224 df-sn 4315 df-pr 4317 df-op 4321 df-uni 4573 df-br 4785 df-opab 4845 df-id 5157 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-iota 5994 df-fun 6033 df-fv 6039 df-ov 6795 df-oprab 6796 df-mpt2 6797 df-xr 10279 df-icc 12386 |
This theorem is referenced by: supicc 12526 supiccub 12527 supicclub 12528 oprpiece1res1 22969 ivthlem1 23438 isosctrlem1 24768 ttgcontlem1 25985 broucube 33769 mblfinlem1 33772 ftc1cnnclem 33808 ftc2nc 33819 areaquad 38321 isosctrlem1ALT 39686 lefldiveq 40017 eliccelioc 40260 iccintsng 40262 eliccnelico 40268 eliccelicod 40269 inficc 40273 iccdificc 40278 iccleubd 40287 cncfiooiccre 40620 itgioocnicc 40704 itgspltprt 40706 itgiccshift 40707 fourierdlem1 40836 fourierdlem20 40855 fourierdlem24 40859 fourierdlem25 40860 fourierdlem27 40862 fourierdlem43 40878 fourierdlem44 40879 fourierdlem50 40884 fourierdlem51 40885 fourierdlem52 40886 fourierdlem64 40898 fourierdlem73 40907 fourierdlem76 40910 fourierdlem79 40913 fourierdlem81 40915 fourierdlem92 40926 fourierdlem102 40936 fourierdlem103 40937 fourierdlem104 40938 fourierdlem114 40948 rrxsnicc 41031 salgencntex 41072 sge0p1 41142 hoidmv1lelem3 41321 hoidmvlelem1 41323 hoidmvlelem4 41326 |
Copyright terms: Public domain | W3C validator |