Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iccdifioo Structured version   Visualization version   GIF version

Theorem iccdifioo 40254
Description: If the open inverval is removed from the closed interval, only the bounds are left. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Assertion
Ref Expression
iccdifioo ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → ((𝐴[,]𝐵) ∖ (𝐴(,)𝐵)) = {𝐴, 𝐵})

Proof of Theorem iccdifioo
StepHypRef Expression
1 uncom 3906 . . . 4 ((𝐴(,)𝐵) ∪ {𝐴, 𝐵}) = ({𝐴, 𝐵} ∪ (𝐴(,)𝐵))
2 prunioo 12507 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → ((𝐴(,)𝐵) ∪ {𝐴, 𝐵}) = (𝐴[,]𝐵))
31, 2syl5reqr 2819 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → (𝐴[,]𝐵) = ({𝐴, 𝐵} ∪ (𝐴(,)𝐵)))
43difeq1d 3876 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → ((𝐴[,]𝐵) ∖ (𝐴(,)𝐵)) = (({𝐴, 𝐵} ∪ (𝐴(,)𝐵)) ∖ (𝐴(,)𝐵)))
5 difun2 4188 . . 3 (({𝐴, 𝐵} ∪ (𝐴(,)𝐵)) ∖ (𝐴(,)𝐵)) = ({𝐴, 𝐵} ∖ (𝐴(,)𝐵))
65a1i 11 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → (({𝐴, 𝐵} ∪ (𝐴(,)𝐵)) ∖ (𝐴(,)𝐵)) = ({𝐴, 𝐵} ∖ (𝐴(,)𝐵)))
7 incom 3954 . . . . . 6 ((𝐴(,)𝐵) ∩ {𝐴, 𝐵}) = ({𝐴, 𝐵} ∩ (𝐴(,)𝐵))
8 iooinlbub 40238 . . . . . 6 ((𝐴(,)𝐵) ∩ {𝐴, 𝐵}) = ∅
97, 8eqtr3i 2794 . . . . 5 ({𝐴, 𝐵} ∩ (𝐴(,)𝐵)) = ∅
10 disj3 4162 . . . . 5 (({𝐴, 𝐵} ∩ (𝐴(,)𝐵)) = ∅ ↔ {𝐴, 𝐵} = ({𝐴, 𝐵} ∖ (𝐴(,)𝐵)))
119, 10mpbi 220 . . . 4 {𝐴, 𝐵} = ({𝐴, 𝐵} ∖ (𝐴(,)𝐵))
1211eqcomi 2779 . . 3 ({𝐴, 𝐵} ∖ (𝐴(,)𝐵)) = {𝐴, 𝐵}
1312a1i 11 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → ({𝐴, 𝐵} ∖ (𝐴(,)𝐵)) = {𝐴, 𝐵})
144, 6, 133eqtrd 2808 1 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → ((𝐴[,]𝐵) ∖ (𝐴(,)𝐵)) = {𝐴, 𝐵})
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1070   = wceq 1630  wcel 2144  cdif 3718  cun 3719  cin 3720  c0 4061  {cpr 4316   class class class wbr 4784  (class class class)co 6792  *cxr 10274  cle 10276  (,)cioo 12379  [,]cicc 12382
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1869  ax-4 1884  ax-5 1990  ax-6 2056  ax-7 2092  ax-8 2146  ax-9 2153  ax-10 2173  ax-11 2189  ax-12 2202  ax-13 2407  ax-ext 2750  ax-sep 4912  ax-nul 4920  ax-pow 4971  ax-pr 5034  ax-un 7095  ax-cnex 10193  ax-resscn 10194  ax-1cn 10195  ax-icn 10196  ax-addcl 10197  ax-addrcl 10198  ax-mulcl 10199  ax-mulrcl 10200  ax-mulcom 10201  ax-addass 10202  ax-mulass 10203  ax-distr 10204  ax-i2m1 10205  ax-1ne0 10206  ax-1rid 10207  ax-rnegex 10208  ax-rrecex 10209  ax-cnre 10210  ax-pre-lttri 10211  ax-pre-lttrn 10212  ax-pre-ltadd 10213  ax-pre-mulgt0 10214  ax-pre-sup 10215
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 827  df-3or 1071  df-3an 1072  df-tru 1633  df-ex 1852  df-nf 1857  df-sb 2049  df-eu 2621  df-mo 2622  df-clab 2757  df-cleq 2763  df-clel 2766  df-nfc 2901  df-ne 2943  df-nel 3046  df-ral 3065  df-rex 3066  df-reu 3067  df-rmo 3068  df-rab 3069  df-v 3351  df-sbc 3586  df-csb 3681  df-dif 3724  df-un 3726  df-in 3728  df-ss 3735  df-pss 3737  df-nul 4062  df-if 4224  df-pw 4297  df-sn 4315  df-pr 4317  df-tp 4319  df-op 4321  df-uni 4573  df-iun 4654  df-br 4785  df-opab 4845  df-mpt 4862  df-tr 4885  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-riota 6753  df-ov 6795  df-oprab 6796  df-mpt2 6797  df-om 7212  df-1st 7314  df-2nd 7315  df-wrecs 7558  df-recs 7620  df-rdg 7658  df-er 7895  df-en 8109  df-dom 8110  df-sdom 8111  df-sup 8503  df-inf 8504  df-pnf 10277  df-mnf 10278  df-xr 10279  df-ltxr 10280  df-le 10281  df-sub 10469  df-neg 10470  df-div 10886  df-nn 11222  df-n0 11494  df-z 11579  df-uz 11888  df-q 11991  df-ioo 12383  df-ico 12385  df-icc 12386
This theorem is referenced by:  ibliooicc  40698
  Copyright terms: Public domain W3C validator