Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iccdificc Structured version   Visualization version   GIF version

Theorem iccdificc 40084
Description: The difference of two closed intervals with the same lower bound. (Contributed by Glauco Siliprandi, 3-Jan-2021.)
Hypotheses
Ref Expression
iccdificc.a (𝜑𝐴 ∈ ℝ*)
iccdificc.b (𝜑𝐵 ∈ ℝ*)
iccdificc.c (𝜑𝐶 ∈ ℝ*)
iccdificc.4 (𝜑𝐴𝐵)
Assertion
Ref Expression
iccdificc (𝜑 → ((𝐴[,]𝐶) ∖ (𝐴[,]𝐵)) = (𝐵(,]𝐶))

Proof of Theorem iccdificc
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 iccdificc.b . . . . . 6 (𝜑𝐵 ∈ ℝ*)
21adantr 480 . . . . 5 ((𝜑𝑥 ∈ ((𝐴[,]𝐶) ∖ (𝐴[,]𝐵))) → 𝐵 ∈ ℝ*)
3 iccdificc.c . . . . . 6 (𝜑𝐶 ∈ ℝ*)
43adantr 480 . . . . 5 ((𝜑𝑥 ∈ ((𝐴[,]𝐶) ∖ (𝐴[,]𝐵))) → 𝐶 ∈ ℝ*)
5 iccssxr 12294 . . . . . . 7 (𝐴[,]𝐶) ⊆ ℝ*
6 eldifi 3765 . . . . . . 7 (𝑥 ∈ ((𝐴[,]𝐶) ∖ (𝐴[,]𝐵)) → 𝑥 ∈ (𝐴[,]𝐶))
75, 6sseldi 3634 . . . . . 6 (𝑥 ∈ ((𝐴[,]𝐶) ∖ (𝐴[,]𝐵)) → 𝑥 ∈ ℝ*)
87adantl 481 . . . . 5 ((𝜑𝑥 ∈ ((𝐴[,]𝐶) ∖ (𝐴[,]𝐵))) → 𝑥 ∈ ℝ*)
9 iccdificc.a . . . . . . . 8 (𝜑𝐴 ∈ ℝ*)
109ad2antrr 762 . . . . . . 7 (((𝜑𝑥 ∈ ((𝐴[,]𝐶) ∖ (𝐴[,]𝐵))) ∧ ¬ 𝐵 < 𝑥) → 𝐴 ∈ ℝ*)
112adantr 480 . . . . . . 7 (((𝜑𝑥 ∈ ((𝐴[,]𝐶) ∖ (𝐴[,]𝐵))) ∧ ¬ 𝐵 < 𝑥) → 𝐵 ∈ ℝ*)
128adantr 480 . . . . . . 7 (((𝜑𝑥 ∈ ((𝐴[,]𝐶) ∖ (𝐴[,]𝐵))) ∧ ¬ 𝐵 < 𝑥) → 𝑥 ∈ ℝ*)
139adantr 480 . . . . . . . . 9 ((𝜑𝑥 ∈ ((𝐴[,]𝐶) ∖ (𝐴[,]𝐵))) → 𝐴 ∈ ℝ*)
146adantl 481 . . . . . . . . 9 ((𝜑𝑥 ∈ ((𝐴[,]𝐶) ∖ (𝐴[,]𝐵))) → 𝑥 ∈ (𝐴[,]𝐶))
15 iccgelb 12268 . . . . . . . . 9 ((𝐴 ∈ ℝ*𝐶 ∈ ℝ*𝑥 ∈ (𝐴[,]𝐶)) → 𝐴𝑥)
1613, 4, 14, 15syl3anc 1366 . . . . . . . 8 ((𝜑𝑥 ∈ ((𝐴[,]𝐶) ∖ (𝐴[,]𝐵))) → 𝐴𝑥)
1716adantr 480 . . . . . . 7 (((𝜑𝑥 ∈ ((𝐴[,]𝐶) ∖ (𝐴[,]𝐵))) ∧ ¬ 𝐵 < 𝑥) → 𝐴𝑥)
18 simpr 476 . . . . . . . 8 (((𝜑𝑥 ∈ ((𝐴[,]𝐶) ∖ (𝐴[,]𝐵))) ∧ ¬ 𝐵 < 𝑥) → ¬ 𝐵 < 𝑥)
198, 2xrlenltd 10142 . . . . . . . . 9 ((𝜑𝑥 ∈ ((𝐴[,]𝐶) ∖ (𝐴[,]𝐵))) → (𝑥𝐵 ↔ ¬ 𝐵 < 𝑥))
2019adantr 480 . . . . . . . 8 (((𝜑𝑥 ∈ ((𝐴[,]𝐶) ∖ (𝐴[,]𝐵))) ∧ ¬ 𝐵 < 𝑥) → (𝑥𝐵 ↔ ¬ 𝐵 < 𝑥))
2118, 20mpbird 247 . . . . . . 7 (((𝜑𝑥 ∈ ((𝐴[,]𝐶) ∖ (𝐴[,]𝐵))) ∧ ¬ 𝐵 < 𝑥) → 𝑥𝐵)
2210, 11, 12, 17, 21eliccxrd 40071 . . . . . 6 (((𝜑𝑥 ∈ ((𝐴[,]𝐶) ∖ (𝐴[,]𝐵))) ∧ ¬ 𝐵 < 𝑥) → 𝑥 ∈ (𝐴[,]𝐵))
23 eldifn 3766 . . . . . . 7 (𝑥 ∈ ((𝐴[,]𝐶) ∖ (𝐴[,]𝐵)) → ¬ 𝑥 ∈ (𝐴[,]𝐵))
2423ad2antlr 763 . . . . . 6 (((𝜑𝑥 ∈ ((𝐴[,]𝐶) ∖ (𝐴[,]𝐵))) ∧ ¬ 𝐵 < 𝑥) → ¬ 𝑥 ∈ (𝐴[,]𝐵))
2522, 24condan 852 . . . . 5 ((𝜑𝑥 ∈ ((𝐴[,]𝐶) ∖ (𝐴[,]𝐵))) → 𝐵 < 𝑥)
26 iccleub 12267 . . . . . 6 ((𝐴 ∈ ℝ*𝐶 ∈ ℝ*𝑥 ∈ (𝐴[,]𝐶)) → 𝑥𝐶)
2713, 4, 14, 26syl3anc 1366 . . . . 5 ((𝜑𝑥 ∈ ((𝐴[,]𝐶) ∖ (𝐴[,]𝐵))) → 𝑥𝐶)
282, 4, 8, 25, 27eliocd 40048 . . . 4 ((𝜑𝑥 ∈ ((𝐴[,]𝐶) ∖ (𝐴[,]𝐵))) → 𝑥 ∈ (𝐵(,]𝐶))
2928ralrimiva 2995 . . 3 (𝜑 → ∀𝑥 ∈ ((𝐴[,]𝐶) ∖ (𝐴[,]𝐵))𝑥 ∈ (𝐵(,]𝐶))
30 dfss3 3625 . . 3 (((𝐴[,]𝐶) ∖ (𝐴[,]𝐵)) ⊆ (𝐵(,]𝐶) ↔ ∀𝑥 ∈ ((𝐴[,]𝐶) ∖ (𝐴[,]𝐵))𝑥 ∈ (𝐵(,]𝐶))
3129, 30sylibr 224 . 2 (𝜑 → ((𝐴[,]𝐶) ∖ (𝐴[,]𝐵)) ⊆ (𝐵(,]𝐶))
329adantr 480 . . . . . 6 ((𝜑𝑥 ∈ (𝐵(,]𝐶)) → 𝐴 ∈ ℝ*)
333adantr 480 . . . . . 6 ((𝜑𝑥 ∈ (𝐵(,]𝐶)) → 𝐶 ∈ ℝ*)
34 iocssxr 12295 . . . . . . . 8 (𝐵(,]𝐶) ⊆ ℝ*
35 id 22 . . . . . . . 8 (𝑥 ∈ (𝐵(,]𝐶) → 𝑥 ∈ (𝐵(,]𝐶))
3634, 35sseldi 3634 . . . . . . 7 (𝑥 ∈ (𝐵(,]𝐶) → 𝑥 ∈ ℝ*)
3736adantl 481 . . . . . 6 ((𝜑𝑥 ∈ (𝐵(,]𝐶)) → 𝑥 ∈ ℝ*)
381adantr 480 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐵(,]𝐶)) → 𝐵 ∈ ℝ*)
39 iccdificc.4 . . . . . . . . 9 (𝜑𝐴𝐵)
4039adantr 480 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐵(,]𝐶)) → 𝐴𝐵)
41 simpr 476 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝐵(,]𝐶)) → 𝑥 ∈ (𝐵(,]𝐶))
42 iocgtlb 40042 . . . . . . . . 9 ((𝐵 ∈ ℝ*𝐶 ∈ ℝ*𝑥 ∈ (𝐵(,]𝐶)) → 𝐵 < 𝑥)
4338, 33, 41, 42syl3anc 1366 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐵(,]𝐶)) → 𝐵 < 𝑥)
4432, 38, 37, 40, 43xrlelttrd 12029 . . . . . . 7 ((𝜑𝑥 ∈ (𝐵(,]𝐶)) → 𝐴 < 𝑥)
4532, 37, 44xrltled 39800 . . . . . 6 ((𝜑𝑥 ∈ (𝐵(,]𝐶)) → 𝐴𝑥)
46 iocleub 40043 . . . . . . 7 ((𝐵 ∈ ℝ*𝐶 ∈ ℝ*𝑥 ∈ (𝐵(,]𝐶)) → 𝑥𝐶)
4738, 33, 41, 46syl3anc 1366 . . . . . 6 ((𝜑𝑥 ∈ (𝐵(,]𝐶)) → 𝑥𝐶)
4832, 33, 37, 45, 47eliccxrd 40071 . . . . 5 ((𝜑𝑥 ∈ (𝐵(,]𝐶)) → 𝑥 ∈ (𝐴[,]𝐶))
4932, 38, 37, 43xrgtnelicc 40083 . . . . 5 ((𝜑𝑥 ∈ (𝐵(,]𝐶)) → ¬ 𝑥 ∈ (𝐴[,]𝐵))
5048, 49eldifd 3618 . . . 4 ((𝜑𝑥 ∈ (𝐵(,]𝐶)) → 𝑥 ∈ ((𝐴[,]𝐶) ∖ (𝐴[,]𝐵)))
5150ralrimiva 2995 . . 3 (𝜑 → ∀𝑥 ∈ (𝐵(,]𝐶)𝑥 ∈ ((𝐴[,]𝐶) ∖ (𝐴[,]𝐵)))
52 dfss3 3625 . . 3 ((𝐵(,]𝐶) ⊆ ((𝐴[,]𝐶) ∖ (𝐴[,]𝐵)) ↔ ∀𝑥 ∈ (𝐵(,]𝐶)𝑥 ∈ ((𝐴[,]𝐶) ∖ (𝐴[,]𝐵)))
5351, 52sylibr 224 . 2 (𝜑 → (𝐵(,]𝐶) ⊆ ((𝐴[,]𝐶) ∖ (𝐴[,]𝐵)))
5431, 53eqssd 3653 1 (𝜑 → ((𝐴[,]𝐶) ∖ (𝐴[,]𝐵)) = (𝐵(,]𝐶))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 383   = wceq 1523  wcel 2030  wral 2941  cdif 3604  wss 3607   class class class wbr 4685  (class class class)co 6690  *cxr 10111   < clt 10112  cle 10113  (,]cioc 12214  [,]cicc 12216
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-pre-lttri 10048  ax-pre-lttrn 10049
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-op 4217  df-uni 4469  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-id 5053  df-po 5064  df-so 5065  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-1st 7210  df-2nd 7211  df-er 7787  df-en 7998  df-dom 7999  df-sdom 8000  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-ioc 12218  df-icc 12220
This theorem is referenced by:  salexct2  40875
  Copyright terms: Public domain W3C validator