MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  icccmplem2 Structured version   Visualization version   GIF version

Theorem icccmplem2 22673
Description: Lemma for icccmp 22675. (Contributed by Mario Carneiro, 13-Jun-2014.)
Hypotheses
Ref Expression
icccmp.1 𝐽 = (topGen‘ran (,))
icccmp.2 𝑇 = (𝐽t (𝐴[,]𝐵))
icccmp.3 𝐷 = ((abs ∘ − ) ↾ (ℝ × ℝ))
icccmp.4 𝑆 = {𝑥 ∈ (𝐴[,]𝐵) ∣ ∃𝑧 ∈ (𝒫 𝑈 ∩ Fin)(𝐴[,]𝑥) ⊆ 𝑧}
icccmp.5 (𝜑𝐴 ∈ ℝ)
icccmp.6 (𝜑𝐵 ∈ ℝ)
icccmp.7 (𝜑𝐴𝐵)
icccmp.8 (𝜑𝑈𝐽)
icccmp.9 (𝜑 → (𝐴[,]𝐵) ⊆ 𝑈)
icccmp.10 (𝜑𝑉𝑈)
icccmp.11 (𝜑𝐶 ∈ ℝ+)
icccmp.12 (𝜑 → (𝐺(ball‘𝐷)𝐶) ⊆ 𝑉)
icccmp.13 𝐺 = sup(𝑆, ℝ, < )
icccmp.14 𝑅 = if((𝐺 + (𝐶 / 2)) ≤ 𝐵, (𝐺 + (𝐶 / 2)), 𝐵)
Assertion
Ref Expression
icccmplem2 (𝜑𝐵𝑆)
Distinct variable groups:   𝑥,𝑧,𝐵   𝑥,𝐴,𝑧   𝑥,𝐷   𝑥,𝑇,𝑧   𝑧,𝐽   𝑥,𝑈,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑧)   𝐶(𝑥,𝑧)   𝐷(𝑧)   𝑅(𝑥,𝑧)   𝑆(𝑥,𝑧)   𝐺(𝑥,𝑧)   𝐽(𝑥)   𝑉(𝑥,𝑧)

Proof of Theorem icccmplem2
Dummy variables 𝑡 𝑛 𝑣 𝑤 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 icccmp.13 . . . . . . 7 𝐺 = sup(𝑆, ℝ, < )
2 icccmp.4 . . . . . . . . . 10 𝑆 = {𝑥 ∈ (𝐴[,]𝐵) ∣ ∃𝑧 ∈ (𝒫 𝑈 ∩ Fin)(𝐴[,]𝑥) ⊆ 𝑧}
3 ssrab2 3720 . . . . . . . . . 10 {𝑥 ∈ (𝐴[,]𝐵) ∣ ∃𝑧 ∈ (𝒫 𝑈 ∩ Fin)(𝐴[,]𝑥) ⊆ 𝑧} ⊆ (𝐴[,]𝐵)
42, 3eqsstri 3668 . . . . . . . . 9 𝑆 ⊆ (𝐴[,]𝐵)
5 icccmp.5 . . . . . . . . . 10 (𝜑𝐴 ∈ ℝ)
6 icccmp.6 . . . . . . . . . 10 (𝜑𝐵 ∈ ℝ)
7 iccssre 12293 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,]𝐵) ⊆ ℝ)
85, 6, 7syl2anc 694 . . . . . . . . 9 (𝜑 → (𝐴[,]𝐵) ⊆ ℝ)
94, 8syl5ss 3647 . . . . . . . 8 (𝜑𝑆 ⊆ ℝ)
10 icccmp.1 . . . . . . . . . . 11 𝐽 = (topGen‘ran (,))
11 icccmp.2 . . . . . . . . . . 11 𝑇 = (𝐽t (𝐴[,]𝐵))
12 icccmp.3 . . . . . . . . . . 11 𝐷 = ((abs ∘ − ) ↾ (ℝ × ℝ))
13 icccmp.7 . . . . . . . . . . 11 (𝜑𝐴𝐵)
14 icccmp.8 . . . . . . . . . . 11 (𝜑𝑈𝐽)
15 icccmp.9 . . . . . . . . . . 11 (𝜑 → (𝐴[,]𝐵) ⊆ 𝑈)
1610, 11, 12, 2, 5, 6, 13, 14, 15icccmplem1 22672 . . . . . . . . . 10 (𝜑 → (𝐴𝑆 ∧ ∀𝑦𝑆 𝑦𝐵))
1716simpld 474 . . . . . . . . 9 (𝜑𝐴𝑆)
18 ne0i 3954 . . . . . . . . 9 (𝐴𝑆𝑆 ≠ ∅)
1917, 18syl 17 . . . . . . . 8 (𝜑𝑆 ≠ ∅)
2016simprd 478 . . . . . . . . 9 (𝜑 → ∀𝑦𝑆 𝑦𝐵)
21 breq2 4689 . . . . . . . . . . 11 (𝑛 = 𝐵 → (𝑦𝑛𝑦𝐵))
2221ralbidv 3015 . . . . . . . . . 10 (𝑛 = 𝐵 → (∀𝑦𝑆 𝑦𝑛 ↔ ∀𝑦𝑆 𝑦𝐵))
2322rspcev 3340 . . . . . . . . 9 ((𝐵 ∈ ℝ ∧ ∀𝑦𝑆 𝑦𝐵) → ∃𝑛 ∈ ℝ ∀𝑦𝑆 𝑦𝑛)
246, 20, 23syl2anc 694 . . . . . . . 8 (𝜑 → ∃𝑛 ∈ ℝ ∀𝑦𝑆 𝑦𝑛)
25 suprcl 11021 . . . . . . . 8 ((𝑆 ⊆ ℝ ∧ 𝑆 ≠ ∅ ∧ ∃𝑛 ∈ ℝ ∀𝑦𝑆 𝑦𝑛) → sup(𝑆, ℝ, < ) ∈ ℝ)
269, 19, 24, 25syl3anc 1366 . . . . . . 7 (𝜑 → sup(𝑆, ℝ, < ) ∈ ℝ)
271, 26syl5eqel 2734 . . . . . 6 (𝜑𝐺 ∈ ℝ)
28 icccmp.11 . . . . . . 7 (𝜑𝐶 ∈ ℝ+)
2928rphalfcld 11922 . . . . . 6 (𝜑 → (𝐶 / 2) ∈ ℝ+)
3027, 29ltaddrpd 11943 . . . . 5 (𝜑𝐺 < (𝐺 + (𝐶 / 2)))
3129rpred 11910 . . . . . . 7 (𝜑 → (𝐶 / 2) ∈ ℝ)
3227, 31readdcld 10107 . . . . . 6 (𝜑 → (𝐺 + (𝐶 / 2)) ∈ ℝ)
3327, 32ltnled 10222 . . . . 5 (𝜑 → (𝐺 < (𝐺 + (𝐶 / 2)) ↔ ¬ (𝐺 + (𝐶 / 2)) ≤ 𝐺))
3430, 33mpbid 222 . . . 4 (𝜑 → ¬ (𝐺 + (𝐶 / 2)) ≤ 𝐺)
35 icccmp.14 . . . . . . . . . 10 𝑅 = if((𝐺 + (𝐶 / 2)) ≤ 𝐵, (𝐺 + (𝐶 / 2)), 𝐵)
3632, 6ifcld 4164 . . . . . . . . . 10 (𝜑 → if((𝐺 + (𝐶 / 2)) ≤ 𝐵, (𝐺 + (𝐶 / 2)), 𝐵) ∈ ℝ)
3735, 36syl5eqel 2734 . . . . . . . . 9 (𝜑𝑅 ∈ ℝ)
38 suprub 11022 . . . . . . . . . . . . . 14 (((𝑆 ⊆ ℝ ∧ 𝑆 ≠ ∅ ∧ ∃𝑛 ∈ ℝ ∀𝑦𝑆 𝑦𝑛) ∧ 𝐴𝑆) → 𝐴 ≤ sup(𝑆, ℝ, < ))
399, 19, 24, 17, 38syl31anc 1369 . . . . . . . . . . . . 13 (𝜑𝐴 ≤ sup(𝑆, ℝ, < ))
4039, 1syl6breqr 4727 . . . . . . . . . . . 12 (𝜑𝐴𝐺)
4127, 32, 30ltled 10223 . . . . . . . . . . . 12 (𝜑𝐺 ≤ (𝐺 + (𝐶 / 2)))
425, 27, 32, 40, 41letrd 10232 . . . . . . . . . . 11 (𝜑𝐴 ≤ (𝐺 + (𝐶 / 2)))
43 breq2 4689 . . . . . . . . . . . 12 ((𝐺 + (𝐶 / 2)) = if((𝐺 + (𝐶 / 2)) ≤ 𝐵, (𝐺 + (𝐶 / 2)), 𝐵) → (𝐴 ≤ (𝐺 + (𝐶 / 2)) ↔ 𝐴 ≤ if((𝐺 + (𝐶 / 2)) ≤ 𝐵, (𝐺 + (𝐶 / 2)), 𝐵)))
44 breq2 4689 . . . . . . . . . . . 12 (𝐵 = if((𝐺 + (𝐶 / 2)) ≤ 𝐵, (𝐺 + (𝐶 / 2)), 𝐵) → (𝐴𝐵𝐴 ≤ if((𝐺 + (𝐶 / 2)) ≤ 𝐵, (𝐺 + (𝐶 / 2)), 𝐵)))
4543, 44ifboth 4157 . . . . . . . . . . 11 ((𝐴 ≤ (𝐺 + (𝐶 / 2)) ∧ 𝐴𝐵) → 𝐴 ≤ if((𝐺 + (𝐶 / 2)) ≤ 𝐵, (𝐺 + (𝐶 / 2)), 𝐵))
4642, 13, 45syl2anc 694 . . . . . . . . . 10 (𝜑𝐴 ≤ if((𝐺 + (𝐶 / 2)) ≤ 𝐵, (𝐺 + (𝐶 / 2)), 𝐵))
4746, 35syl6breqr 4727 . . . . . . . . 9 (𝜑𝐴𝑅)
48 min2 12059 . . . . . . . . . . 11 (((𝐺 + (𝐶 / 2)) ∈ ℝ ∧ 𝐵 ∈ ℝ) → if((𝐺 + (𝐶 / 2)) ≤ 𝐵, (𝐺 + (𝐶 / 2)), 𝐵) ≤ 𝐵)
4932, 6, 48syl2anc 694 . . . . . . . . . 10 (𝜑 → if((𝐺 + (𝐶 / 2)) ≤ 𝐵, (𝐺 + (𝐶 / 2)), 𝐵) ≤ 𝐵)
5035, 49syl5eqbr 4720 . . . . . . . . 9 (𝜑𝑅𝐵)
51 elicc2 12276 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝑅 ∈ (𝐴[,]𝐵) ↔ (𝑅 ∈ ℝ ∧ 𝐴𝑅𝑅𝐵)))
525, 6, 51syl2anc 694 . . . . . . . . 9 (𝜑 → (𝑅 ∈ (𝐴[,]𝐵) ↔ (𝑅 ∈ ℝ ∧ 𝐴𝑅𝑅𝐵)))
5337, 47, 50, 52mpbir3and 1264 . . . . . . . 8 (𝜑𝑅 ∈ (𝐴[,]𝐵))
5427, 28ltsubrpd 11942 . . . . . . . . . . 11 (𝜑 → (𝐺𝐶) < 𝐺)
5554, 1syl6breq 4726 . . . . . . . . . 10 (𝜑 → (𝐺𝐶) < sup(𝑆, ℝ, < ))
5628rpred 11910 . . . . . . . . . . . 12 (𝜑𝐶 ∈ ℝ)
5727, 56resubcld 10496 . . . . . . . . . . 11 (𝜑 → (𝐺𝐶) ∈ ℝ)
58 suprlub 11025 . . . . . . . . . . 11 (((𝑆 ⊆ ℝ ∧ 𝑆 ≠ ∅ ∧ ∃𝑛 ∈ ℝ ∀𝑦𝑆 𝑦𝑛) ∧ (𝐺𝐶) ∈ ℝ) → ((𝐺𝐶) < sup(𝑆, ℝ, < ) ↔ ∃𝑣𝑆 (𝐺𝐶) < 𝑣))
599, 19, 24, 57, 58syl31anc 1369 . . . . . . . . . 10 (𝜑 → ((𝐺𝐶) < sup(𝑆, ℝ, < ) ↔ ∃𝑣𝑆 (𝐺𝐶) < 𝑣))
6055, 59mpbid 222 . . . . . . . . 9 (𝜑 → ∃𝑣𝑆 (𝐺𝐶) < 𝑣)
61 oveq2 6698 . . . . . . . . . . . . . 14 (𝑥 = 𝑣 → (𝐴[,]𝑥) = (𝐴[,]𝑣))
6261sseq1d 3665 . . . . . . . . . . . . 13 (𝑥 = 𝑣 → ((𝐴[,]𝑥) ⊆ 𝑧 ↔ (𝐴[,]𝑣) ⊆ 𝑧))
6362rexbidv 3081 . . . . . . . . . . . 12 (𝑥 = 𝑣 → (∃𝑧 ∈ (𝒫 𝑈 ∩ Fin)(𝐴[,]𝑥) ⊆ 𝑧 ↔ ∃𝑧 ∈ (𝒫 𝑈 ∩ Fin)(𝐴[,]𝑣) ⊆ 𝑧))
6463, 2elrab2 3399 . . . . . . . . . . 11 (𝑣𝑆 ↔ (𝑣 ∈ (𝐴[,]𝐵) ∧ ∃𝑧 ∈ (𝒫 𝑈 ∩ Fin)(𝐴[,]𝑣) ⊆ 𝑧))
65 unieq 4476 . . . . . . . . . . . . . . 15 (𝑧 = 𝑤 𝑧 = 𝑤)
6665sseq2d 3666 . . . . . . . . . . . . . 14 (𝑧 = 𝑤 → ((𝐴[,]𝑣) ⊆ 𝑧 ↔ (𝐴[,]𝑣) ⊆ 𝑤))
6766cbvrexv 3202 . . . . . . . . . . . . 13 (∃𝑧 ∈ (𝒫 𝑈 ∩ Fin)(𝐴[,]𝑣) ⊆ 𝑧 ↔ ∃𝑤 ∈ (𝒫 𝑈 ∩ Fin)(𝐴[,]𝑣) ⊆ 𝑤)
68 simpr1 1087 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑣 ∈ (𝐴[,]𝐵)) ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ (𝐴[,]𝑣) ⊆ 𝑤 ∧ (𝐺𝐶) < 𝑣)) → 𝑤 ∈ (𝒫 𝑈 ∩ Fin))
69 elin 3829 . . . . . . . . . . . . . . . . . . . . . 22 (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ↔ (𝑤 ∈ 𝒫 𝑈𝑤 ∈ Fin))
7068, 69sylib 208 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑣 ∈ (𝐴[,]𝐵)) ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ (𝐴[,]𝑣) ⊆ 𝑤 ∧ (𝐺𝐶) < 𝑣)) → (𝑤 ∈ 𝒫 𝑈𝑤 ∈ Fin))
7170simpld 474 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑣 ∈ (𝐴[,]𝐵)) ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ (𝐴[,]𝑣) ⊆ 𝑤 ∧ (𝐺𝐶) < 𝑣)) → 𝑤 ∈ 𝒫 𝑈)
7271elpwid 4203 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑣 ∈ (𝐴[,]𝐵)) ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ (𝐴[,]𝑣) ⊆ 𝑤 ∧ (𝐺𝐶) < 𝑣)) → 𝑤𝑈)
73 simpll 805 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑣 ∈ (𝐴[,]𝐵)) ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ (𝐴[,]𝑣) ⊆ 𝑤 ∧ (𝐺𝐶) < 𝑣)) → 𝜑)
74 icccmp.10 . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝑉𝑈)
7573, 74syl 17 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑣 ∈ (𝐴[,]𝐵)) ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ (𝐴[,]𝑣) ⊆ 𝑤 ∧ (𝐺𝐶) < 𝑣)) → 𝑉𝑈)
7675snssd 4372 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑣 ∈ (𝐴[,]𝐵)) ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ (𝐴[,]𝑣) ⊆ 𝑤 ∧ (𝐺𝐶) < 𝑣)) → {𝑉} ⊆ 𝑈)
7772, 76unssd 3822 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑣 ∈ (𝐴[,]𝐵)) ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ (𝐴[,]𝑣) ⊆ 𝑤 ∧ (𝐺𝐶) < 𝑣)) → (𝑤 ∪ {𝑉}) ⊆ 𝑈)
78 vex 3234 . . . . . . . . . . . . . . . . . . . 20 𝑤 ∈ V
79 snex 4938 . . . . . . . . . . . . . . . . . . . 20 {𝑉} ∈ V
8078, 79unex 6998 . . . . . . . . . . . . . . . . . . 19 (𝑤 ∪ {𝑉}) ∈ V
8180elpw 4197 . . . . . . . . . . . . . . . . . 18 ((𝑤 ∪ {𝑉}) ∈ 𝒫 𝑈 ↔ (𝑤 ∪ {𝑉}) ⊆ 𝑈)
8277, 81sylibr 224 . . . . . . . . . . . . . . . . 17 (((𝜑𝑣 ∈ (𝐴[,]𝐵)) ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ (𝐴[,]𝑣) ⊆ 𝑤 ∧ (𝐺𝐶) < 𝑣)) → (𝑤 ∪ {𝑉}) ∈ 𝒫 𝑈)
8370simprd 478 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑣 ∈ (𝐴[,]𝐵)) ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ (𝐴[,]𝑣) ⊆ 𝑤 ∧ (𝐺𝐶) < 𝑣)) → 𝑤 ∈ Fin)
84 snfi 8079 . . . . . . . . . . . . . . . . . 18 {𝑉} ∈ Fin
85 unfi 8268 . . . . . . . . . . . . . . . . . 18 ((𝑤 ∈ Fin ∧ {𝑉} ∈ Fin) → (𝑤 ∪ {𝑉}) ∈ Fin)
8683, 84, 85sylancl 695 . . . . . . . . . . . . . . . . 17 (((𝜑𝑣 ∈ (𝐴[,]𝐵)) ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ (𝐴[,]𝑣) ⊆ 𝑤 ∧ (𝐺𝐶) < 𝑣)) → (𝑤 ∪ {𝑉}) ∈ Fin)
8782, 86elind 3831 . . . . . . . . . . . . . . . 16 (((𝜑𝑣 ∈ (𝐴[,]𝐵)) ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ (𝐴[,]𝑣) ⊆ 𝑤 ∧ (𝐺𝐶) < 𝑣)) → (𝑤 ∪ {𝑉}) ∈ (𝒫 𝑈 ∩ Fin))
88 simplr2 1124 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑣 ∈ (𝐴[,]𝐵)) ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ (𝐴[,]𝑣) ⊆ 𝑤 ∧ (𝐺𝐶) < 𝑣)) ∧ (𝑡 ∈ (𝐴[,]𝑅) ∧ 𝑡𝑣)) → (𝐴[,]𝑣) ⊆ 𝑤)
89 ssun1 3809 . . . . . . . . . . . . . . . . . . . . . . 23 𝑤 ⊆ ( 𝑤𝑉)
9088, 89syl6ss 3648 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑣 ∈ (𝐴[,]𝐵)) ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ (𝐴[,]𝑣) ⊆ 𝑤 ∧ (𝐺𝐶) < 𝑣)) ∧ (𝑡 ∈ (𝐴[,]𝑅) ∧ 𝑡𝑣)) → (𝐴[,]𝑣) ⊆ ( 𝑤𝑉))
9173, 5syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑𝑣 ∈ (𝐴[,]𝐵)) ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ (𝐴[,]𝑣) ⊆ 𝑤 ∧ (𝐺𝐶) < 𝑣)) → 𝐴 ∈ ℝ)
9273, 37syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑𝑣 ∈ (𝐴[,]𝐵)) ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ (𝐴[,]𝑣) ⊆ 𝑤 ∧ (𝐺𝐶) < 𝑣)) → 𝑅 ∈ ℝ)
93 elicc2 12276 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝐴 ∈ ℝ ∧ 𝑅 ∈ ℝ) → (𝑡 ∈ (𝐴[,]𝑅) ↔ (𝑡 ∈ ℝ ∧ 𝐴𝑡𝑡𝑅)))
9491, 92, 93syl2anc 694 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑣 ∈ (𝐴[,]𝐵)) ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ (𝐴[,]𝑣) ⊆ 𝑤 ∧ (𝐺𝐶) < 𝑣)) → (𝑡 ∈ (𝐴[,]𝑅) ↔ (𝑡 ∈ ℝ ∧ 𝐴𝑡𝑡𝑅)))
9594biimpa 500 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑣 ∈ (𝐴[,]𝐵)) ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ (𝐴[,]𝑣) ⊆ 𝑤 ∧ (𝐺𝐶) < 𝑣)) ∧ 𝑡 ∈ (𝐴[,]𝑅)) → (𝑡 ∈ ℝ ∧ 𝐴𝑡𝑡𝑅))
9695simp1d 1093 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑣 ∈ (𝐴[,]𝐵)) ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ (𝐴[,]𝑣) ⊆ 𝑤 ∧ (𝐺𝐶) < 𝑣)) ∧ 𝑡 ∈ (𝐴[,]𝑅)) → 𝑡 ∈ ℝ)
9796adantrr 753 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑣 ∈ (𝐴[,]𝐵)) ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ (𝐴[,]𝑣) ⊆ 𝑤 ∧ (𝐺𝐶) < 𝑣)) ∧ (𝑡 ∈ (𝐴[,]𝑅) ∧ 𝑡𝑣)) → 𝑡 ∈ ℝ)
9895simp2d 1094 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑣 ∈ (𝐴[,]𝐵)) ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ (𝐴[,]𝑣) ⊆ 𝑤 ∧ (𝐺𝐶) < 𝑣)) ∧ 𝑡 ∈ (𝐴[,]𝑅)) → 𝐴𝑡)
9998adantrr 753 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑣 ∈ (𝐴[,]𝐵)) ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ (𝐴[,]𝑣) ⊆ 𝑤 ∧ (𝐺𝐶) < 𝑣)) ∧ (𝑡 ∈ (𝐴[,]𝑅) ∧ 𝑡𝑣)) → 𝐴𝑡)
100 simprr 811 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑣 ∈ (𝐴[,]𝐵)) ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ (𝐴[,]𝑣) ⊆ 𝑤 ∧ (𝐺𝐶) < 𝑣)) ∧ (𝑡 ∈ (𝐴[,]𝑅) ∧ 𝑡𝑣)) → 𝑡𝑣)
10173, 8syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑣 ∈ (𝐴[,]𝐵)) ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ (𝐴[,]𝑣) ⊆ 𝑤 ∧ (𝐺𝐶) < 𝑣)) → (𝐴[,]𝐵) ⊆ ℝ)
102 simplr 807 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑣 ∈ (𝐴[,]𝐵)) ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ (𝐴[,]𝑣) ⊆ 𝑤 ∧ (𝐺𝐶) < 𝑣)) → 𝑣 ∈ (𝐴[,]𝐵))
103101, 102sseldd 3637 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑣 ∈ (𝐴[,]𝐵)) ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ (𝐴[,]𝑣) ⊆ 𝑤 ∧ (𝐺𝐶) < 𝑣)) → 𝑣 ∈ ℝ)
104 elicc2 12276 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝐴 ∈ ℝ ∧ 𝑣 ∈ ℝ) → (𝑡 ∈ (𝐴[,]𝑣) ↔ (𝑡 ∈ ℝ ∧ 𝐴𝑡𝑡𝑣)))
10591, 103, 104syl2anc 694 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑣 ∈ (𝐴[,]𝐵)) ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ (𝐴[,]𝑣) ⊆ 𝑤 ∧ (𝐺𝐶) < 𝑣)) → (𝑡 ∈ (𝐴[,]𝑣) ↔ (𝑡 ∈ ℝ ∧ 𝐴𝑡𝑡𝑣)))
106105adantr 480 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑣 ∈ (𝐴[,]𝐵)) ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ (𝐴[,]𝑣) ⊆ 𝑤 ∧ (𝐺𝐶) < 𝑣)) ∧ (𝑡 ∈ (𝐴[,]𝑅) ∧ 𝑡𝑣)) → (𝑡 ∈ (𝐴[,]𝑣) ↔ (𝑡 ∈ ℝ ∧ 𝐴𝑡𝑡𝑣)))
10797, 99, 100, 106mpbir3and 1264 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑣 ∈ (𝐴[,]𝐵)) ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ (𝐴[,]𝑣) ⊆ 𝑤 ∧ (𝐺𝐶) < 𝑣)) ∧ (𝑡 ∈ (𝐴[,]𝑅) ∧ 𝑡𝑣)) → 𝑡 ∈ (𝐴[,]𝑣))
10890, 107sseldd 3637 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑣 ∈ (𝐴[,]𝐵)) ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ (𝐴[,]𝑣) ⊆ 𝑤 ∧ (𝐺𝐶) < 𝑣)) ∧ (𝑡 ∈ (𝐴[,]𝑅) ∧ 𝑡𝑣)) → 𝑡 ∈ ( 𝑤𝑉))
109108expr 642 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑣 ∈ (𝐴[,]𝐵)) ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ (𝐴[,]𝑣) ⊆ 𝑤 ∧ (𝐺𝐶) < 𝑣)) ∧ 𝑡 ∈ (𝐴[,]𝑅)) → (𝑡𝑣𝑡 ∈ ( 𝑤𝑉)))
11073adantr 480 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑣 ∈ (𝐴[,]𝐵)) ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ (𝐴[,]𝑣) ⊆ 𝑤 ∧ (𝐺𝐶) < 𝑣)) ∧ (𝑡 ∈ (𝐴[,]𝑅) ∧ 𝑣 < 𝑡)) → 𝜑)
111 icccmp.12 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → (𝐺(ball‘𝐷)𝐶) ⊆ 𝑉)
112110, 111syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑣 ∈ (𝐴[,]𝐵)) ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ (𝐴[,]𝑣) ⊆ 𝑤 ∧ (𝐺𝐶) < 𝑣)) ∧ (𝑡 ∈ (𝐴[,]𝑅) ∧ 𝑣 < 𝑡)) → (𝐺(ball‘𝐷)𝐶) ⊆ 𝑉)
11396adantrr 753 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑣 ∈ (𝐴[,]𝐵)) ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ (𝐴[,]𝑣) ⊆ 𝑤 ∧ (𝐺𝐶) < 𝑣)) ∧ (𝑡 ∈ (𝐴[,]𝑅) ∧ 𝑣 < 𝑡)) → 𝑡 ∈ ℝ)
114110, 57syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜑𝑣 ∈ (𝐴[,]𝐵)) ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ (𝐴[,]𝑣) ⊆ 𝑤 ∧ (𝐺𝐶) < 𝑣)) ∧ (𝑡 ∈ (𝐴[,]𝑅) ∧ 𝑣 < 𝑡)) → (𝐺𝐶) ∈ ℝ)
115103adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜑𝑣 ∈ (𝐴[,]𝐵)) ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ (𝐴[,]𝑣) ⊆ 𝑤 ∧ (𝐺𝐶) < 𝑣)) ∧ (𝑡 ∈ (𝐴[,]𝑅) ∧ 𝑣 < 𝑡)) → 𝑣 ∈ ℝ)
116 simplr3 1125 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜑𝑣 ∈ (𝐴[,]𝐵)) ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ (𝐴[,]𝑣) ⊆ 𝑤 ∧ (𝐺𝐶) < 𝑣)) ∧ (𝑡 ∈ (𝐴[,]𝑅) ∧ 𝑣 < 𝑡)) → (𝐺𝐶) < 𝑣)
117 simprr 811 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜑𝑣 ∈ (𝐴[,]𝐵)) ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ (𝐴[,]𝑣) ⊆ 𝑤 ∧ (𝐺𝐶) < 𝑣)) ∧ (𝑡 ∈ (𝐴[,]𝑅) ∧ 𝑣 < 𝑡)) → 𝑣 < 𝑡)
118114, 115, 113, 116, 117lttrd 10236 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑣 ∈ (𝐴[,]𝐵)) ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ (𝐴[,]𝑣) ⊆ 𝑤 ∧ (𝐺𝐶) < 𝑣)) ∧ (𝑡 ∈ (𝐴[,]𝑅) ∧ 𝑣 < 𝑡)) → (𝐺𝐶) < 𝑡)
119110, 37syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜑𝑣 ∈ (𝐴[,]𝐵)) ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ (𝐴[,]𝑣) ⊆ 𝑤 ∧ (𝐺𝐶) < 𝑣)) ∧ (𝑡 ∈ (𝐴[,]𝑅) ∧ 𝑣 < 𝑡)) → 𝑅 ∈ ℝ)
12027, 56readdcld 10107 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝜑 → (𝐺 + 𝐶) ∈ ℝ)
121110, 120syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜑𝑣 ∈ (𝐴[,]𝐵)) ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ (𝐴[,]𝑣) ⊆ 𝑤 ∧ (𝐺𝐶) < 𝑣)) ∧ (𝑡 ∈ (𝐴[,]𝑅) ∧ 𝑣 < 𝑡)) → (𝐺 + 𝐶) ∈ ℝ)
12295simp3d 1095 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑𝑣 ∈ (𝐴[,]𝐵)) ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ (𝐴[,]𝑣) ⊆ 𝑤 ∧ (𝐺𝐶) < 𝑣)) ∧ 𝑡 ∈ (𝐴[,]𝑅)) → 𝑡𝑅)
123122adantrr 753 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜑𝑣 ∈ (𝐴[,]𝐵)) ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ (𝐴[,]𝑣) ⊆ 𝑤 ∧ (𝐺𝐶) < 𝑣)) ∧ (𝑡 ∈ (𝐴[,]𝑅) ∧ 𝑣 < 𝑡)) → 𝑡𝑅)
124 min1 12058 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝐺 + (𝐶 / 2)) ∈ ℝ ∧ 𝐵 ∈ ℝ) → if((𝐺 + (𝐶 / 2)) ≤ 𝐵, (𝐺 + (𝐶 / 2)), 𝐵) ≤ (𝐺 + (𝐶 / 2)))
12532, 6, 124syl2anc 694 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝜑 → if((𝐺 + (𝐶 / 2)) ≤ 𝐵, (𝐺 + (𝐶 / 2)), 𝐵) ≤ (𝐺 + (𝐶 / 2)))
12635, 125syl5eqbr 4720 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝜑𝑅 ≤ (𝐺 + (𝐶 / 2)))
127 rphalflt 11898 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝐶 ∈ ℝ+ → (𝐶 / 2) < 𝐶)
12828, 127syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝜑 → (𝐶 / 2) < 𝐶)
12931, 56, 27, 128ltadd2dd 10234 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝜑 → (𝐺 + (𝐶 / 2)) < (𝐺 + 𝐶))
13037, 32, 120, 126, 129lelttrd 10233 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝜑𝑅 < (𝐺 + 𝐶))
131110, 130syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜑𝑣 ∈ (𝐴[,]𝐵)) ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ (𝐴[,]𝑣) ⊆ 𝑤 ∧ (𝐺𝐶) < 𝑣)) ∧ (𝑡 ∈ (𝐴[,]𝑅) ∧ 𝑣 < 𝑡)) → 𝑅 < (𝐺 + 𝐶))
132113, 119, 121, 123, 131lelttrd 10233 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑣 ∈ (𝐴[,]𝐵)) ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ (𝐴[,]𝑣) ⊆ 𝑤 ∧ (𝐺𝐶) < 𝑣)) ∧ (𝑡 ∈ (𝐴[,]𝑅) ∧ 𝑣 < 𝑡)) → 𝑡 < (𝐺 + 𝐶))
133 rexr 10123 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝐺𝐶) ∈ ℝ → (𝐺𝐶) ∈ ℝ*)
134 rexr 10123 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝐺 + 𝐶) ∈ ℝ → (𝐺 + 𝐶) ∈ ℝ*)
135 elioo2 12254 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝐺𝐶) ∈ ℝ* ∧ (𝐺 + 𝐶) ∈ ℝ*) → (𝑡 ∈ ((𝐺𝐶)(,)(𝐺 + 𝐶)) ↔ (𝑡 ∈ ℝ ∧ (𝐺𝐶) < 𝑡𝑡 < (𝐺 + 𝐶))))
136133, 134, 135syl2an 493 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝐺𝐶) ∈ ℝ ∧ (𝐺 + 𝐶) ∈ ℝ) → (𝑡 ∈ ((𝐺𝐶)(,)(𝐺 + 𝐶)) ↔ (𝑡 ∈ ℝ ∧ (𝐺𝐶) < 𝑡𝑡 < (𝐺 + 𝐶))))
137114, 121, 136syl2anc 694 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑣 ∈ (𝐴[,]𝐵)) ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ (𝐴[,]𝑣) ⊆ 𝑤 ∧ (𝐺𝐶) < 𝑣)) ∧ (𝑡 ∈ (𝐴[,]𝑅) ∧ 𝑣 < 𝑡)) → (𝑡 ∈ ((𝐺𝐶)(,)(𝐺 + 𝐶)) ↔ (𝑡 ∈ ℝ ∧ (𝐺𝐶) < 𝑡𝑡 < (𝐺 + 𝐶))))
138113, 118, 132, 137mpbir3and 1264 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑣 ∈ (𝐴[,]𝐵)) ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ (𝐴[,]𝑣) ⊆ 𝑤 ∧ (𝐺𝐶) < 𝑣)) ∧ (𝑡 ∈ (𝐴[,]𝑅) ∧ 𝑣 < 𝑡)) → 𝑡 ∈ ((𝐺𝐶)(,)(𝐺 + 𝐶)))
139110, 27syl 17 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑣 ∈ (𝐴[,]𝐵)) ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ (𝐴[,]𝑣) ⊆ 𝑤 ∧ (𝐺𝐶) < 𝑣)) ∧ (𝑡 ∈ (𝐴[,]𝑅) ∧ 𝑣 < 𝑡)) → 𝐺 ∈ ℝ)
140110, 28syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜑𝑣 ∈ (𝐴[,]𝐵)) ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ (𝐴[,]𝑣) ⊆ 𝑤 ∧ (𝐺𝐶) < 𝑣)) ∧ (𝑡 ∈ (𝐴[,]𝑅) ∧ 𝑣 < 𝑡)) → 𝐶 ∈ ℝ+)
141140rpred 11910 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑣 ∈ (𝐴[,]𝐵)) ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ (𝐴[,]𝑣) ⊆ 𝑤 ∧ (𝐺𝐶) < 𝑣)) ∧ (𝑡 ∈ (𝐴[,]𝑅) ∧ 𝑣 < 𝑡)) → 𝐶 ∈ ℝ)
14212bl2ioo 22642 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝐺 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐺(ball‘𝐷)𝐶) = ((𝐺𝐶)(,)(𝐺 + 𝐶)))
143139, 141, 142syl2anc 694 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑣 ∈ (𝐴[,]𝐵)) ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ (𝐴[,]𝑣) ⊆ 𝑤 ∧ (𝐺𝐶) < 𝑣)) ∧ (𝑡 ∈ (𝐴[,]𝑅) ∧ 𝑣 < 𝑡)) → (𝐺(ball‘𝐷)𝐶) = ((𝐺𝐶)(,)(𝐺 + 𝐶)))
144138, 143eleqtrrd 2733 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑣 ∈ (𝐴[,]𝐵)) ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ (𝐴[,]𝑣) ⊆ 𝑤 ∧ (𝐺𝐶) < 𝑣)) ∧ (𝑡 ∈ (𝐴[,]𝑅) ∧ 𝑣 < 𝑡)) → 𝑡 ∈ (𝐺(ball‘𝐷)𝐶))
145112, 144sseldd 3637 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑣 ∈ (𝐴[,]𝐵)) ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ (𝐴[,]𝑣) ⊆ 𝑤 ∧ (𝐺𝐶) < 𝑣)) ∧ (𝑡 ∈ (𝐴[,]𝑅) ∧ 𝑣 < 𝑡)) → 𝑡𝑉)
146 elun2 3814 . . . . . . . . . . . . . . . . . . . . . 22 (𝑡𝑉𝑡 ∈ ( 𝑤𝑉))
147145, 146syl 17 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑣 ∈ (𝐴[,]𝐵)) ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ (𝐴[,]𝑣) ⊆ 𝑤 ∧ (𝐺𝐶) < 𝑣)) ∧ (𝑡 ∈ (𝐴[,]𝑅) ∧ 𝑣 < 𝑡)) → 𝑡 ∈ ( 𝑤𝑉))
148147expr 642 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑣 ∈ (𝐴[,]𝐵)) ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ (𝐴[,]𝑣) ⊆ 𝑤 ∧ (𝐺𝐶) < 𝑣)) ∧ 𝑡 ∈ (𝐴[,]𝑅)) → (𝑣 < 𝑡𝑡 ∈ ( 𝑤𝑉)))
149103adantr 480 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑣 ∈ (𝐴[,]𝐵)) ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ (𝐴[,]𝑣) ⊆ 𝑤 ∧ (𝐺𝐶) < 𝑣)) ∧ 𝑡 ∈ (𝐴[,]𝑅)) → 𝑣 ∈ ℝ)
150 lelttric 10182 . . . . . . . . . . . . . . . . . . . . 21 ((𝑡 ∈ ℝ ∧ 𝑣 ∈ ℝ) → (𝑡𝑣𝑣 < 𝑡))
15196, 149, 150syl2anc 694 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑣 ∈ (𝐴[,]𝐵)) ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ (𝐴[,]𝑣) ⊆ 𝑤 ∧ (𝐺𝐶) < 𝑣)) ∧ 𝑡 ∈ (𝐴[,]𝑅)) → (𝑡𝑣𝑣 < 𝑡))
152109, 148, 151mpjaod 395 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑣 ∈ (𝐴[,]𝐵)) ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ (𝐴[,]𝑣) ⊆ 𝑤 ∧ (𝐺𝐶) < 𝑣)) ∧ 𝑡 ∈ (𝐴[,]𝑅)) → 𝑡 ∈ ( 𝑤𝑉))
153152ex 449 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑣 ∈ (𝐴[,]𝐵)) ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ (𝐴[,]𝑣) ⊆ 𝑤 ∧ (𝐺𝐶) < 𝑣)) → (𝑡 ∈ (𝐴[,]𝑅) → 𝑡 ∈ ( 𝑤𝑉)))
154153ssrdv 3642 . . . . . . . . . . . . . . . . 17 (((𝜑𝑣 ∈ (𝐴[,]𝐵)) ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ (𝐴[,]𝑣) ⊆ 𝑤 ∧ (𝐺𝐶) < 𝑣)) → (𝐴[,]𝑅) ⊆ ( 𝑤𝑉))
155 uniun 4488 . . . . . . . . . . . . . . . . . 18 (𝑤 ∪ {𝑉}) = ( 𝑤 {𝑉})
156 unisng 4484 . . . . . . . . . . . . . . . . . . . 20 (𝑉𝑈 {𝑉} = 𝑉)
15775, 156syl 17 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑣 ∈ (𝐴[,]𝐵)) ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ (𝐴[,]𝑣) ⊆ 𝑤 ∧ (𝐺𝐶) < 𝑣)) → {𝑉} = 𝑉)
158157uneq2d 3800 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑣 ∈ (𝐴[,]𝐵)) ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ (𝐴[,]𝑣) ⊆ 𝑤 ∧ (𝐺𝐶) < 𝑣)) → ( 𝑤 {𝑉}) = ( 𝑤𝑉))
159155, 158syl5eq 2697 . . . . . . . . . . . . . . . . 17 (((𝜑𝑣 ∈ (𝐴[,]𝐵)) ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ (𝐴[,]𝑣) ⊆ 𝑤 ∧ (𝐺𝐶) < 𝑣)) → (𝑤 ∪ {𝑉}) = ( 𝑤𝑉))
160154, 159sseqtr4d 3675 . . . . . . . . . . . . . . . 16 (((𝜑𝑣 ∈ (𝐴[,]𝐵)) ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ (𝐴[,]𝑣) ⊆ 𝑤 ∧ (𝐺𝐶) < 𝑣)) → (𝐴[,]𝑅) ⊆ (𝑤 ∪ {𝑉}))
161 unieq 4476 . . . . . . . . . . . . . . . . . 18 (𝑦 = (𝑤 ∪ {𝑉}) → 𝑦 = (𝑤 ∪ {𝑉}))
162161sseq2d 3666 . . . . . . . . . . . . . . . . 17 (𝑦 = (𝑤 ∪ {𝑉}) → ((𝐴[,]𝑅) ⊆ 𝑦 ↔ (𝐴[,]𝑅) ⊆ (𝑤 ∪ {𝑉})))
163162rspcev 3340 . . . . . . . . . . . . . . . 16 (((𝑤 ∪ {𝑉}) ∈ (𝒫 𝑈 ∩ Fin) ∧ (𝐴[,]𝑅) ⊆ (𝑤 ∪ {𝑉})) → ∃𝑦 ∈ (𝒫 𝑈 ∩ Fin)(𝐴[,]𝑅) ⊆ 𝑦)
16487, 160, 163syl2anc 694 . . . . . . . . . . . . . . 15 (((𝜑𝑣 ∈ (𝐴[,]𝐵)) ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ (𝐴[,]𝑣) ⊆ 𝑤 ∧ (𝐺𝐶) < 𝑣)) → ∃𝑦 ∈ (𝒫 𝑈 ∩ Fin)(𝐴[,]𝑅) ⊆ 𝑦)
1651643exp2 1307 . . . . . . . . . . . . . 14 ((𝜑𝑣 ∈ (𝐴[,]𝐵)) → (𝑤 ∈ (𝒫 𝑈 ∩ Fin) → ((𝐴[,]𝑣) ⊆ 𝑤 → ((𝐺𝐶) < 𝑣 → ∃𝑦 ∈ (𝒫 𝑈 ∩ Fin)(𝐴[,]𝑅) ⊆ 𝑦))))
166165rexlimdv 3059 . . . . . . . . . . . . 13 ((𝜑𝑣 ∈ (𝐴[,]𝐵)) → (∃𝑤 ∈ (𝒫 𝑈 ∩ Fin)(𝐴[,]𝑣) ⊆ 𝑤 → ((𝐺𝐶) < 𝑣 → ∃𝑦 ∈ (𝒫 𝑈 ∩ Fin)(𝐴[,]𝑅) ⊆ 𝑦)))
16767, 166syl5bi 232 . . . . . . . . . . . 12 ((𝜑𝑣 ∈ (𝐴[,]𝐵)) → (∃𝑧 ∈ (𝒫 𝑈 ∩ Fin)(𝐴[,]𝑣) ⊆ 𝑧 → ((𝐺𝐶) < 𝑣 → ∃𝑦 ∈ (𝒫 𝑈 ∩ Fin)(𝐴[,]𝑅) ⊆ 𝑦)))
168167expimpd 628 . . . . . . . . . . 11 (𝜑 → ((𝑣 ∈ (𝐴[,]𝐵) ∧ ∃𝑧 ∈ (𝒫 𝑈 ∩ Fin)(𝐴[,]𝑣) ⊆ 𝑧) → ((𝐺𝐶) < 𝑣 → ∃𝑦 ∈ (𝒫 𝑈 ∩ Fin)(𝐴[,]𝑅) ⊆ 𝑦)))
16964, 168syl5bi 232 . . . . . . . . . 10 (𝜑 → (𝑣𝑆 → ((𝐺𝐶) < 𝑣 → ∃𝑦 ∈ (𝒫 𝑈 ∩ Fin)(𝐴[,]𝑅) ⊆ 𝑦)))
170169rexlimdv 3059 . . . . . . . . 9 (𝜑 → (∃𝑣𝑆 (𝐺𝐶) < 𝑣 → ∃𝑦 ∈ (𝒫 𝑈 ∩ Fin)(𝐴[,]𝑅) ⊆ 𝑦))
17160, 170mpd 15 . . . . . . . 8 (𝜑 → ∃𝑦 ∈ (𝒫 𝑈 ∩ Fin)(𝐴[,]𝑅) ⊆ 𝑦)
172 oveq2 6698 . . . . . . . . . . 11 (𝑣 = 𝑅 → (𝐴[,]𝑣) = (𝐴[,]𝑅))
173172sseq1d 3665 . . . . . . . . . 10 (𝑣 = 𝑅 → ((𝐴[,]𝑣) ⊆ 𝑦 ↔ (𝐴[,]𝑅) ⊆ 𝑦))
174173rexbidv 3081 . . . . . . . . 9 (𝑣 = 𝑅 → (∃𝑦 ∈ (𝒫 𝑈 ∩ Fin)(𝐴[,]𝑣) ⊆ 𝑦 ↔ ∃𝑦 ∈ (𝒫 𝑈 ∩ Fin)(𝐴[,]𝑅) ⊆ 𝑦))
175 unieq 4476 . . . . . . . . . . . . . 14 (𝑧 = 𝑦 𝑧 = 𝑦)
176175sseq2d 3666 . . . . . . . . . . . . 13 (𝑧 = 𝑦 → ((𝐴[,]𝑣) ⊆ 𝑧 ↔ (𝐴[,]𝑣) ⊆ 𝑦))
177176cbvrexv 3202 . . . . . . . . . . . 12 (∃𝑧 ∈ (𝒫 𝑈 ∩ Fin)(𝐴[,]𝑣) ⊆ 𝑧 ↔ ∃𝑦 ∈ (𝒫 𝑈 ∩ Fin)(𝐴[,]𝑣) ⊆ 𝑦)
17863, 177syl6bb 276 . . . . . . . . . . 11 (𝑥 = 𝑣 → (∃𝑧 ∈ (𝒫 𝑈 ∩ Fin)(𝐴[,]𝑥) ⊆ 𝑧 ↔ ∃𝑦 ∈ (𝒫 𝑈 ∩ Fin)(𝐴[,]𝑣) ⊆ 𝑦))
179178cbvrabv 3230 . . . . . . . . . 10 {𝑥 ∈ (𝐴[,]𝐵) ∣ ∃𝑧 ∈ (𝒫 𝑈 ∩ Fin)(𝐴[,]𝑥) ⊆ 𝑧} = {𝑣 ∈ (𝐴[,]𝐵) ∣ ∃𝑦 ∈ (𝒫 𝑈 ∩ Fin)(𝐴[,]𝑣) ⊆ 𝑦}
1802, 179eqtri 2673 . . . . . . . . 9 𝑆 = {𝑣 ∈ (𝐴[,]𝐵) ∣ ∃𝑦 ∈ (𝒫 𝑈 ∩ Fin)(𝐴[,]𝑣) ⊆ 𝑦}
181174, 180elrab2 3399 . . . . . . . 8 (𝑅𝑆 ↔ (𝑅 ∈ (𝐴[,]𝐵) ∧ ∃𝑦 ∈ (𝒫 𝑈 ∩ Fin)(𝐴[,]𝑅) ⊆ 𝑦))
18253, 171, 181sylanbrc 699 . . . . . . 7 (𝜑𝑅𝑆)
183 suprub 11022 . . . . . . 7 (((𝑆 ⊆ ℝ ∧ 𝑆 ≠ ∅ ∧ ∃𝑛 ∈ ℝ ∀𝑦𝑆 𝑦𝑛) ∧ 𝑅𝑆) → 𝑅 ≤ sup(𝑆, ℝ, < ))
1849, 19, 24, 182, 183syl31anc 1369 . . . . . 6 (𝜑𝑅 ≤ sup(𝑆, ℝ, < ))
185184, 1syl6breqr 4727 . . . . 5 (𝜑𝑅𝐺)
186 iftrue 4125 . . . . . . 7 ((𝐺 + (𝐶 / 2)) ≤ 𝐵 → if((𝐺 + (𝐶 / 2)) ≤ 𝐵, (𝐺 + (𝐶 / 2)), 𝐵) = (𝐺 + (𝐶 / 2)))
18735, 186syl5eq 2697 . . . . . 6 ((𝐺 + (𝐶 / 2)) ≤ 𝐵𝑅 = (𝐺 + (𝐶 / 2)))
188187breq1d 4695 . . . . 5 ((𝐺 + (𝐶 / 2)) ≤ 𝐵 → (𝑅𝐺 ↔ (𝐺 + (𝐶 / 2)) ≤ 𝐺))
189185, 188syl5ibcom 235 . . . 4 (𝜑 → ((𝐺 + (𝐶 / 2)) ≤ 𝐵 → (𝐺 + (𝐶 / 2)) ≤ 𝐺))
19034, 189mtod 189 . . 3 (𝜑 → ¬ (𝐺 + (𝐶 / 2)) ≤ 𝐵)
191 iffalse 4128 . . . 4 (¬ (𝐺 + (𝐶 / 2)) ≤ 𝐵 → if((𝐺 + (𝐶 / 2)) ≤ 𝐵, (𝐺 + (𝐶 / 2)), 𝐵) = 𝐵)
19235, 191syl5eq 2697 . . 3 (¬ (𝐺 + (𝐶 / 2)) ≤ 𝐵𝑅 = 𝐵)
193190, 192syl 17 . 2 (𝜑𝑅 = 𝐵)
194193, 182eqeltrrd 2731 1 (𝜑𝐵𝑆)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wo 382  wa 383  w3a 1054   = wceq 1523  wcel 2030  wne 2823  wral 2941  wrex 2942  {crab 2945  cun 3605  cin 3606  wss 3607  c0 3948  ifcif 4119  𝒫 cpw 4191  {csn 4210   cuni 4468   class class class wbr 4685   × cxp 5141  ran crn 5144  cres 5145  ccom 5147  cfv 5926  (class class class)co 6690  Fincfn 7997  supcsup 8387  cr 9973   + caddc 9977  *cxr 10111   < clt 10112  cle 10113  cmin 10304   / cdiv 10722  2c2 11108  +crp 11870  (,)cioo 12213  [,]cicc 12216  abscabs 14018  t crest 16128  topGenctg 16145  ballcbl 19781
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051  ax-pre-sup 10052
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-oadd 7609  df-er 7787  df-map 7901  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-sup 8389  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-div 10723  df-nn 11059  df-2 11117  df-3 11118  df-n0 11331  df-z 11416  df-uz 11726  df-rp 11871  df-xadd 11985  df-ioo 12217  df-icc 12220  df-seq 12842  df-exp 12901  df-cj 13883  df-re 13884  df-im 13885  df-sqrt 14019  df-abs 14020  df-psmet 19786  df-xmet 19787  df-met 19788  df-bl 19789
This theorem is referenced by:  icccmplem3  22674
  Copyright terms: Public domain W3C validator