MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  icccmplem1 Structured version   Visualization version   GIF version

Theorem icccmplem1 22846
Description: Lemma for icccmp 22849. (Contributed by Mario Carneiro, 18-Jun-2014.)
Hypotheses
Ref Expression
icccmp.1 𝐽 = (topGen‘ran (,))
icccmp.2 𝑇 = (𝐽t (𝐴[,]𝐵))
icccmp.3 𝐷 = ((abs ∘ − ) ↾ (ℝ × ℝ))
icccmp.4 𝑆 = {𝑥 ∈ (𝐴[,]𝐵) ∣ ∃𝑧 ∈ (𝒫 𝑈 ∩ Fin)(𝐴[,]𝑥) ⊆ 𝑧}
icccmp.5 (𝜑𝐴 ∈ ℝ)
icccmp.6 (𝜑𝐵 ∈ ℝ)
icccmp.7 (𝜑𝐴𝐵)
icccmp.8 (𝜑𝑈𝐽)
icccmp.9 (𝜑 → (𝐴[,]𝐵) ⊆ 𝑈)
Assertion
Ref Expression
icccmplem1 (𝜑 → (𝐴𝑆 ∧ ∀𝑦𝑆 𝑦𝐵))
Distinct variable groups:   𝑥,𝑦,𝑧,𝐵   𝜑,𝑦   𝑥,𝐴,𝑦,𝑧   𝑥,𝐷   𝑥,𝑇,𝑧   𝑧,𝐽   𝑦,𝑆   𝑥,𝑈,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑧)   𝐷(𝑦,𝑧)   𝑆(𝑥,𝑧)   𝑇(𝑦)   𝐽(𝑥,𝑦)

Proof of Theorem icccmplem1
Dummy variable 𝑢 is distinct from all other variables.
StepHypRef Expression
1 icccmp.5 . . . . 5 (𝜑𝐴 ∈ ℝ)
21rexrd 10301 . . . 4 (𝜑𝐴 ∈ ℝ*)
3 icccmp.6 . . . . 5 (𝜑𝐵 ∈ ℝ)
43rexrd 10301 . . . 4 (𝜑𝐵 ∈ ℝ*)
5 icccmp.7 . . . 4 (𝜑𝐴𝐵)
6 lbicc2 12501 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → 𝐴 ∈ (𝐴[,]𝐵))
72, 4, 5, 6syl3anc 1477 . . 3 (𝜑𝐴 ∈ (𝐴[,]𝐵))
8 icccmp.9 . . . . . 6 (𝜑 → (𝐴[,]𝐵) ⊆ 𝑈)
98, 7sseldd 3745 . . . . 5 (𝜑𝐴 𝑈)
10 eluni2 4592 . . . . 5 (𝐴 𝑈 ↔ ∃𝑢𝑈 𝐴𝑢)
119, 10sylib 208 . . . 4 (𝜑 → ∃𝑢𝑈 𝐴𝑢)
12 snssi 4484 . . . . . . . 8 (𝑢𝑈 → {𝑢} ⊆ 𝑈)
1312ad2antrl 766 . . . . . . 7 ((𝜑 ∧ (𝑢𝑈𝐴𝑢)) → {𝑢} ⊆ 𝑈)
14 snex 5057 . . . . . . . 8 {𝑢} ∈ V
1514elpw 4308 . . . . . . 7 ({𝑢} ∈ 𝒫 𝑈 ↔ {𝑢} ⊆ 𝑈)
1613, 15sylibr 224 . . . . . 6 ((𝜑 ∧ (𝑢𝑈𝐴𝑢)) → {𝑢} ∈ 𝒫 𝑈)
17 snfi 8205 . . . . . . 7 {𝑢} ∈ Fin
1817a1i 11 . . . . . 6 ((𝜑 ∧ (𝑢𝑈𝐴𝑢)) → {𝑢} ∈ Fin)
1916, 18elind 3941 . . . . 5 ((𝜑 ∧ (𝑢𝑈𝐴𝑢)) → {𝑢} ∈ (𝒫 𝑈 ∩ Fin))
202adantr 472 . . . . . . 7 ((𝜑 ∧ (𝑢𝑈𝐴𝑢)) → 𝐴 ∈ ℝ*)
21 iccid 12433 . . . . . . 7 (𝐴 ∈ ℝ* → (𝐴[,]𝐴) = {𝐴})
2220, 21syl 17 . . . . . 6 ((𝜑 ∧ (𝑢𝑈𝐴𝑢)) → (𝐴[,]𝐴) = {𝐴})
23 snssi 4484 . . . . . . 7 (𝐴𝑢 → {𝐴} ⊆ 𝑢)
2423ad2antll 767 . . . . . 6 ((𝜑 ∧ (𝑢𝑈𝐴𝑢)) → {𝐴} ⊆ 𝑢)
2522, 24eqsstrd 3780 . . . . 5 ((𝜑 ∧ (𝑢𝑈𝐴𝑢)) → (𝐴[,]𝐴) ⊆ 𝑢)
26 unieq 4596 . . . . . . . 8 (𝑧 = {𝑢} → 𝑧 = {𝑢})
27 vex 3343 . . . . . . . . 9 𝑢 ∈ V
2827unisn 4603 . . . . . . . 8 {𝑢} = 𝑢
2926, 28syl6eq 2810 . . . . . . 7 (𝑧 = {𝑢} → 𝑧 = 𝑢)
3029sseq2d 3774 . . . . . 6 (𝑧 = {𝑢} → ((𝐴[,]𝐴) ⊆ 𝑧 ↔ (𝐴[,]𝐴) ⊆ 𝑢))
3130rspcev 3449 . . . . 5 (({𝑢} ∈ (𝒫 𝑈 ∩ Fin) ∧ (𝐴[,]𝐴) ⊆ 𝑢) → ∃𝑧 ∈ (𝒫 𝑈 ∩ Fin)(𝐴[,]𝐴) ⊆ 𝑧)
3219, 25, 31syl2anc 696 . . . 4 ((𝜑 ∧ (𝑢𝑈𝐴𝑢)) → ∃𝑧 ∈ (𝒫 𝑈 ∩ Fin)(𝐴[,]𝐴) ⊆ 𝑧)
3311, 32rexlimddv 3173 . . 3 (𝜑 → ∃𝑧 ∈ (𝒫 𝑈 ∩ Fin)(𝐴[,]𝐴) ⊆ 𝑧)
34 oveq2 6822 . . . . . 6 (𝑥 = 𝐴 → (𝐴[,]𝑥) = (𝐴[,]𝐴))
3534sseq1d 3773 . . . . 5 (𝑥 = 𝐴 → ((𝐴[,]𝑥) ⊆ 𝑧 ↔ (𝐴[,]𝐴) ⊆ 𝑧))
3635rexbidv 3190 . . . 4 (𝑥 = 𝐴 → (∃𝑧 ∈ (𝒫 𝑈 ∩ Fin)(𝐴[,]𝑥) ⊆ 𝑧 ↔ ∃𝑧 ∈ (𝒫 𝑈 ∩ Fin)(𝐴[,]𝐴) ⊆ 𝑧))
37 icccmp.4 . . . 4 𝑆 = {𝑥 ∈ (𝐴[,]𝐵) ∣ ∃𝑧 ∈ (𝒫 𝑈 ∩ Fin)(𝐴[,]𝑥) ⊆ 𝑧}
3836, 37elrab2 3507 . . 3 (𝐴𝑆 ↔ (𝐴 ∈ (𝐴[,]𝐵) ∧ ∃𝑧 ∈ (𝒫 𝑈 ∩ Fin)(𝐴[,]𝐴) ⊆ 𝑧))
397, 33, 38sylanbrc 701 . 2 (𝜑𝐴𝑆)
40 ssrab2 3828 . . . . . 6 {𝑥 ∈ (𝐴[,]𝐵) ∣ ∃𝑧 ∈ (𝒫 𝑈 ∩ Fin)(𝐴[,]𝑥) ⊆ 𝑧} ⊆ (𝐴[,]𝐵)
4137, 40eqsstri 3776 . . . . 5 𝑆 ⊆ (𝐴[,]𝐵)
4241sseli 3740 . . . 4 (𝑦𝑆𝑦 ∈ (𝐴[,]𝐵))
43 elicc2 12451 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝑦 ∈ (𝐴[,]𝐵) ↔ (𝑦 ∈ ℝ ∧ 𝐴𝑦𝑦𝐵)))
441, 3, 43syl2anc 696 . . . . . 6 (𝜑 → (𝑦 ∈ (𝐴[,]𝐵) ↔ (𝑦 ∈ ℝ ∧ 𝐴𝑦𝑦𝐵)))
4544biimpa 502 . . . . 5 ((𝜑𝑦 ∈ (𝐴[,]𝐵)) → (𝑦 ∈ ℝ ∧ 𝐴𝑦𝑦𝐵))
4645simp3d 1139 . . . 4 ((𝜑𝑦 ∈ (𝐴[,]𝐵)) → 𝑦𝐵)
4742, 46sylan2 492 . . 3 ((𝜑𝑦𝑆) → 𝑦𝐵)
4847ralrimiva 3104 . 2 (𝜑 → ∀𝑦𝑆 𝑦𝐵)
4939, 48jca 555 1 (𝜑 → (𝐴𝑆 ∧ ∀𝑦𝑆 𝑦𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383  w3a 1072   = wceq 1632  wcel 2139  wral 3050  wrex 3051  {crab 3054  cin 3714  wss 3715  𝒫 cpw 4302  {csn 4321   cuni 4588   class class class wbr 4804   × cxp 5264  ran crn 5267  cres 5268  ccom 5270  cfv 6049  (class class class)co 6814  Fincfn 8123  cr 10147  *cxr 10285  cle 10287  cmin 10478  (,)cioo 12388  [,]cicc 12391  abscabs 14193  t crest 16303  topGenctg 16320
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7115  ax-cnex 10204  ax-resscn 10205  ax-pre-lttri 10222  ax-pre-lttrn 10223
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-ov 6817  df-oprab 6818  df-mpt2 6819  df-om 7232  df-1o 7730  df-er 7913  df-en 8124  df-dom 8125  df-sdom 8126  df-fin 8127  df-pnf 10288  df-mnf 10289  df-xr 10290  df-ltxr 10291  df-le 10292  df-icc 12395
This theorem is referenced by:  icccmplem2  22847  icccmplem3  22848
  Copyright terms: Public domain W3C validator