MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  icccld Structured version   Visualization version   GIF version

Theorem icccld 22790
Description: Closed intervals are closed sets of the standard topology on . (Contributed by FL, 14-Sep-2007.)
Assertion
Ref Expression
icccld ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,]𝐵) ∈ (Clsd‘(topGen‘ran (,))))

Proof of Theorem icccld
StepHypRef Expression
1 difreicc 12511 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (ℝ ∖ (𝐴[,]𝐵)) = ((-∞(,)𝐴) ∪ (𝐵(,)+∞)))
2 retop 22785 . . . 4 (topGen‘ran (,)) ∈ Top
3 iooretop 22789 . . . 4 (-∞(,)𝐴) ∈ (topGen‘ran (,))
4 iooretop 22789 . . . 4 (𝐵(,)+∞) ∈ (topGen‘ran (,))
5 unopn 20928 . . . 4 (((topGen‘ran (,)) ∈ Top ∧ (-∞(,)𝐴) ∈ (topGen‘ran (,)) ∧ (𝐵(,)+∞) ∈ (topGen‘ran (,))) → ((-∞(,)𝐴) ∪ (𝐵(,)+∞)) ∈ (topGen‘ran (,)))
62, 3, 4, 5mp3an 1572 . . 3 ((-∞(,)𝐴) ∪ (𝐵(,)+∞)) ∈ (topGen‘ran (,))
71, 6syl6eqel 2858 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (ℝ ∖ (𝐴[,]𝐵)) ∈ (topGen‘ran (,)))
8 iccssre 12460 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,]𝐵) ⊆ ℝ)
9 uniretop 22786 . . . 4 ℝ = (topGen‘ran (,))
109iscld2 21053 . . 3 (((topGen‘ran (,)) ∈ Top ∧ (𝐴[,]𝐵) ⊆ ℝ) → ((𝐴[,]𝐵) ∈ (Clsd‘(topGen‘ran (,))) ↔ (ℝ ∖ (𝐴[,]𝐵)) ∈ (topGen‘ran (,))))
112, 8, 10sylancr 575 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴[,]𝐵) ∈ (Clsd‘(topGen‘ran (,))) ↔ (ℝ ∖ (𝐴[,]𝐵)) ∈ (topGen‘ran (,))))
127, 11mpbird 247 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,]𝐵) ∈ (Clsd‘(topGen‘ran (,))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 382  wcel 2145  cdif 3720  cun 3721  wss 3723  ran crn 5251  cfv 6030  (class class class)co 6796  cr 10141  +∞cpnf 10277  -∞cmnf 10278  (,)cioo 12380  [,]cicc 12383  topGenctg 16306  Topctop 20918  Clsdccld 21041
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-sep 4916  ax-nul 4924  ax-pow 4975  ax-pr 5035  ax-un 7100  ax-cnex 10198  ax-resscn 10199  ax-1cn 10200  ax-icn 10201  ax-addcl 10202  ax-addrcl 10203  ax-mulcl 10204  ax-mulrcl 10205  ax-mulcom 10206  ax-addass 10207  ax-mulass 10208  ax-distr 10209  ax-i2m1 10210  ax-1ne0 10211  ax-1rid 10212  ax-rnegex 10213  ax-rrecex 10214  ax-cnre 10215  ax-pre-lttri 10216  ax-pre-lttrn 10217  ax-pre-ltadd 10218  ax-pre-mulgt0 10219  ax-pre-sup 10220
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4227  df-pw 4300  df-sn 4318  df-pr 4320  df-tp 4322  df-op 4324  df-uni 4576  df-iun 4657  df-br 4788  df-opab 4848  df-mpt 4865  df-tr 4888  df-id 5158  df-eprel 5163  df-po 5171  df-so 5172  df-fr 5209  df-we 5211  df-xp 5256  df-rel 5257  df-cnv 5258  df-co 5259  df-dm 5260  df-rn 5261  df-res 5262  df-ima 5263  df-pred 5822  df-ord 5868  df-on 5869  df-lim 5870  df-suc 5871  df-iota 5993  df-fun 6032  df-fn 6033  df-f 6034  df-f1 6035  df-fo 6036  df-f1o 6037  df-fv 6038  df-riota 6757  df-ov 6799  df-oprab 6800  df-mpt2 6801  df-om 7217  df-1st 7319  df-2nd 7320  df-wrecs 7563  df-recs 7625  df-rdg 7663  df-er 7900  df-en 8114  df-dom 8115  df-sdom 8116  df-sup 8508  df-inf 8509  df-pnf 10282  df-mnf 10283  df-xr 10284  df-ltxr 10285  df-le 10286  df-sub 10474  df-neg 10475  df-div 10891  df-nn 11227  df-n0 11500  df-z 11585  df-uz 11894  df-q 11997  df-ioo 12384  df-icc 12387  df-topgen 16312  df-top 20919  df-bases 20971  df-cld 21044
This theorem is referenced by:  cnmpt2pc  22947  cvmliftlem10  31614  mblfinlem1  33779  mblfinlem2  33780  icccmpALT  33972
  Copyright terms: Public domain W3C validator