Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iccbnd Structured version   Visualization version   GIF version

Theorem iccbnd 33964
Description: A closed interval in is bounded. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 22-Sep-2015.)
Hypotheses
Ref Expression
iccbnd.1 𝐽 = (𝐴[,]𝐵)
iccbnd.2 𝑀 = ((abs ∘ − ) ↾ (𝐽 × 𝐽))
Assertion
Ref Expression
iccbnd ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝑀 ∈ (Bnd‘𝐽))

Proof of Theorem iccbnd
Dummy variables 𝑥 𝑟 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 iccbnd.2 . . 3 𝑀 = ((abs ∘ − ) ↾ (𝐽 × 𝐽))
2 cnmet 22794 . . . 4 (abs ∘ − ) ∈ (Met‘ℂ)
3 iccbnd.1 . . . . . 6 𝐽 = (𝐴[,]𝐵)
4 iccssre 12459 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,]𝐵) ⊆ ℝ)
53, 4syl5eqss 3796 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐽 ⊆ ℝ)
6 ax-resscn 10194 . . . . 5 ℝ ⊆ ℂ
75, 6syl6ss 3762 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐽 ⊆ ℂ)
8 metres2 22387 . . . 4 (((abs ∘ − ) ∈ (Met‘ℂ) ∧ 𝐽 ⊆ ℂ) → ((abs ∘ − ) ↾ (𝐽 × 𝐽)) ∈ (Met‘𝐽))
92, 7, 8sylancr 567 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((abs ∘ − ) ↾ (𝐽 × 𝐽)) ∈ (Met‘𝐽))
101, 9syl5eqel 2853 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝑀 ∈ (Met‘𝐽))
11 resubcl 10546 . . . 4 ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝐵𝐴) ∈ ℝ)
1211ancoms 455 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐵𝐴) ∈ ℝ)
131oveqi 6805 . . . . . . 7 (𝑥𝑀𝑦) = (𝑥((abs ∘ − ) ↾ (𝐽 × 𝐽))𝑦)
14 ovres 6946 . . . . . . . 8 ((𝑥𝐽𝑦𝐽) → (𝑥((abs ∘ − ) ↾ (𝐽 × 𝐽))𝑦) = (𝑥(abs ∘ − )𝑦))
1514adantl 467 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑥𝐽𝑦𝐽)) → (𝑥((abs ∘ − ) ↾ (𝐽 × 𝐽))𝑦) = (𝑥(abs ∘ − )𝑦))
1613, 15syl5eq 2816 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑥𝐽𝑦𝐽)) → (𝑥𝑀𝑦) = (𝑥(abs ∘ − )𝑦))
177sselda 3750 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑥𝐽) → 𝑥 ∈ ℂ)
187sselda 3750 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑦𝐽) → 𝑦 ∈ ℂ)
1917, 18anim12dan 597 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑥𝐽𝑦𝐽)) → (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ))
20 eqid 2770 . . . . . . . 8 (abs ∘ − ) = (abs ∘ − )
2120cnmetdval 22793 . . . . . . 7 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥(abs ∘ − )𝑦) = (abs‘(𝑥𝑦)))
2219, 21syl 17 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑥𝐽𝑦𝐽)) → (𝑥(abs ∘ − )𝑦) = (abs‘(𝑥𝑦)))
2316, 22eqtrd 2804 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑥𝐽𝑦𝐽)) → (𝑥𝑀𝑦) = (abs‘(𝑥𝑦)))
24 simprr 748 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑥𝐽𝑦𝐽)) → 𝑦𝐽)
2524, 3syl6eleq 2859 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑥𝐽𝑦𝐽)) → 𝑦 ∈ (𝐴[,]𝐵))
26 elicc2 12442 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝑦 ∈ (𝐴[,]𝐵) ↔ (𝑦 ∈ ℝ ∧ 𝐴𝑦𝑦𝐵)))
2726adantr 466 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑥𝐽𝑦𝐽)) → (𝑦 ∈ (𝐴[,]𝐵) ↔ (𝑦 ∈ ℝ ∧ 𝐴𝑦𝑦𝐵)))
2825, 27mpbid 222 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑥𝐽𝑦𝐽)) → (𝑦 ∈ ℝ ∧ 𝐴𝑦𝑦𝐵))
2928simp1d 1135 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑥𝐽𝑦𝐽)) → 𝑦 ∈ ℝ)
3012adantr 466 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑥𝐽𝑦𝐽)) → (𝐵𝐴) ∈ ℝ)
31 resubcl 10546 . . . . . . . 8 ((𝑦 ∈ ℝ ∧ (𝐵𝐴) ∈ ℝ) → (𝑦 − (𝐵𝐴)) ∈ ℝ)
3229, 30, 31syl2anc 565 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑥𝐽𝑦𝐽)) → (𝑦 − (𝐵𝐴)) ∈ ℝ)
33 simpll 742 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑥𝐽𝑦𝐽)) → 𝐴 ∈ ℝ)
34 simprl 746 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑥𝐽𝑦𝐽)) → 𝑥𝐽)
3534, 3syl6eleq 2859 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑥𝐽𝑦𝐽)) → 𝑥 ∈ (𝐴[,]𝐵))
36 elicc2 12442 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝑥 ∈ (𝐴[,]𝐵) ↔ (𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥𝐵)))
3736adantr 466 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑥𝐽𝑦𝐽)) → (𝑥 ∈ (𝐴[,]𝐵) ↔ (𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥𝐵)))
3835, 37mpbid 222 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑥𝐽𝑦𝐽)) → (𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥𝐵))
3938simp1d 1135 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑥𝐽𝑦𝐽)) → 𝑥 ∈ ℝ)
40 simplr 744 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑥𝐽𝑦𝐽)) → 𝐵 ∈ ℝ)
4128simp3d 1137 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑥𝐽𝑦𝐽)) → 𝑦𝐵)
4229, 40, 33, 41lesub1dd 10844 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑥𝐽𝑦𝐽)) → (𝑦𝐴) ≤ (𝐵𝐴))
4329, 33, 30, 42subled 10831 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑥𝐽𝑦𝐽)) → (𝑦 − (𝐵𝐴)) ≤ 𝐴)
4438simp2d 1136 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑥𝐽𝑦𝐽)) → 𝐴𝑥)
4532, 33, 39, 43, 44letrd 10395 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑥𝐽𝑦𝐽)) → (𝑦 − (𝐵𝐴)) ≤ 𝑥)
4629, 30readdcld 10270 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑥𝐽𝑦𝐽)) → (𝑦 + (𝐵𝐴)) ∈ ℝ)
4738simp3d 1137 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑥𝐽𝑦𝐽)) → 𝑥𝐵)
4828simp2d 1136 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑥𝐽𝑦𝐽)) → 𝐴𝑦)
4933, 29, 40, 48lesub2dd 10845 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑥𝐽𝑦𝐽)) → (𝐵𝑦) ≤ (𝐵𝐴))
5040, 29, 30lesubadd2d 10827 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑥𝐽𝑦𝐽)) → ((𝐵𝑦) ≤ (𝐵𝐴) ↔ 𝐵 ≤ (𝑦 + (𝐵𝐴))))
5149, 50mpbid 222 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑥𝐽𝑦𝐽)) → 𝐵 ≤ (𝑦 + (𝐵𝐴)))
5239, 40, 46, 47, 51letrd 10395 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑥𝐽𝑦𝐽)) → 𝑥 ≤ (𝑦 + (𝐵𝐴)))
5339, 29, 30absdifled 14380 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑥𝐽𝑦𝐽)) → ((abs‘(𝑥𝑦)) ≤ (𝐵𝐴) ↔ ((𝑦 − (𝐵𝐴)) ≤ 𝑥𝑥 ≤ (𝑦 + (𝐵𝐴)))))
5445, 52, 53mpbir2and 684 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑥𝐽𝑦𝐽)) → (abs‘(𝑥𝑦)) ≤ (𝐵𝐴))
5523, 54eqbrtrd 4806 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑥𝐽𝑦𝐽)) → (𝑥𝑀𝑦) ≤ (𝐵𝐴))
5655ralrimivva 3119 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ∀𝑥𝐽𝑦𝐽 (𝑥𝑀𝑦) ≤ (𝐵𝐴))
57 breq2 4788 . . . . 5 (𝑟 = (𝐵𝐴) → ((𝑥𝑀𝑦) ≤ 𝑟 ↔ (𝑥𝑀𝑦) ≤ (𝐵𝐴)))
58572ralbidv 3137 . . . 4 (𝑟 = (𝐵𝐴) → (∀𝑥𝐽𝑦𝐽 (𝑥𝑀𝑦) ≤ 𝑟 ↔ ∀𝑥𝐽𝑦𝐽 (𝑥𝑀𝑦) ≤ (𝐵𝐴)))
5958rspcev 3458 . . 3 (((𝐵𝐴) ∈ ℝ ∧ ∀𝑥𝐽𝑦𝐽 (𝑥𝑀𝑦) ≤ (𝐵𝐴)) → ∃𝑟 ∈ ℝ ∀𝑥𝐽𝑦𝐽 (𝑥𝑀𝑦) ≤ 𝑟)
6012, 56, 59syl2anc 565 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ∃𝑟 ∈ ℝ ∀𝑥𝐽𝑦𝐽 (𝑥𝑀𝑦) ≤ 𝑟)
61 isbnd3b 33909 . 2 (𝑀 ∈ (Bnd‘𝐽) ↔ (𝑀 ∈ (Met‘𝐽) ∧ ∃𝑟 ∈ ℝ ∀𝑥𝐽𝑦𝐽 (𝑥𝑀𝑦) ≤ 𝑟))
6210, 60, 61sylanbrc 564 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝑀 ∈ (Bnd‘𝐽))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 382  w3a 1070   = wceq 1630  wcel 2144  wral 3060  wrex 3061  wss 3721   class class class wbr 4784   × cxp 5247  cres 5251  ccom 5253  cfv 6031  (class class class)co 6792  cc 10135  cr 10136   + caddc 10140  cle 10276  cmin 10467  [,]cicc 12382  abscabs 14181  Metcme 19946  Bndcbnd 33891
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1869  ax-4 1884  ax-5 1990  ax-6 2056  ax-7 2092  ax-8 2146  ax-9 2153  ax-10 2173  ax-11 2189  ax-12 2202  ax-13 2407  ax-ext 2750  ax-sep 4912  ax-nul 4920  ax-pow 4971  ax-pr 5034  ax-un 7095  ax-cnex 10193  ax-resscn 10194  ax-1cn 10195  ax-icn 10196  ax-addcl 10197  ax-addrcl 10198  ax-mulcl 10199  ax-mulrcl 10200  ax-mulcom 10201  ax-addass 10202  ax-mulass 10203  ax-distr 10204  ax-i2m1 10205  ax-1ne0 10206  ax-1rid 10207  ax-rnegex 10208  ax-rrecex 10209  ax-cnre 10210  ax-pre-lttri 10211  ax-pre-lttrn 10212  ax-pre-ltadd 10213  ax-pre-mulgt0 10214  ax-pre-sup 10215
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 827  df-3or 1071  df-3an 1072  df-tru 1633  df-ex 1852  df-nf 1857  df-sb 2049  df-eu 2621  df-mo 2622  df-clab 2757  df-cleq 2763  df-clel 2766  df-nfc 2901  df-ne 2943  df-nel 3046  df-ral 3065  df-rex 3066  df-reu 3067  df-rmo 3068  df-rab 3069  df-v 3351  df-sbc 3586  df-csb 3681  df-dif 3724  df-un 3726  df-in 3728  df-ss 3735  df-pss 3737  df-nul 4062  df-if 4224  df-pw 4297  df-sn 4315  df-pr 4317  df-tp 4319  df-op 4321  df-uni 4573  df-iun 4654  df-br 4785  df-opab 4845  df-mpt 4862  df-tr 4885  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-riota 6753  df-ov 6795  df-oprab 6796  df-mpt2 6797  df-om 7212  df-1st 7314  df-2nd 7315  df-wrecs 7558  df-recs 7620  df-rdg 7658  df-er 7895  df-ec 7897  df-map 8010  df-en 8109  df-dom 8110  df-sdom 8111  df-sup 8503  df-pnf 10277  df-mnf 10278  df-xr 10279  df-ltxr 10280  df-le 10281  df-sub 10469  df-neg 10470  df-div 10886  df-nn 11222  df-2 11280  df-3 11281  df-n0 11494  df-z 11579  df-uz 11888  df-rp 12035  df-xneg 12150  df-xadd 12151  df-xmul 12152  df-icc 12386  df-seq 13008  df-exp 13067  df-cj 14046  df-re 14047  df-im 14048  df-sqrt 14182  df-abs 14183  df-psmet 19952  df-xmet 19953  df-met 19954  df-bl 19955  df-bnd 33903
This theorem is referenced by:  icccmpALT  33965
  Copyright terms: Public domain W3C validator