MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iblss2 Structured version   Visualization version   GIF version

Theorem iblss2 23742
Description: Change the domain of an integrability predicate. (Contributed by Mario Carneiro, 13-Aug-2014.) (Revised by Mario Carneiro, 23-Aug-2014.)
Hypotheses
Ref Expression
iblss2.1 (𝜑𝐴𝐵)
iblss2.2 (𝜑𝐵 ∈ dom vol)
iblss2.3 ((𝜑𝑥𝐴) → 𝐶𝑉)
iblss2.4 ((𝜑𝑥 ∈ (𝐵𝐴)) → 𝐶 = 0)
iblss2.5 (𝜑 → (𝑥𝐴𝐶) ∈ 𝐿1)
Assertion
Ref Expression
iblss2 (𝜑 → (𝑥𝐵𝐶) ∈ 𝐿1)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝜑,𝑥   𝑥,𝑉
Allowed substitution hint:   𝐶(𝑥)

Proof of Theorem iblss2
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 iblss2.1 . . 3 (𝜑𝐴𝐵)
2 iblss2.2 . . 3 (𝜑𝐵 ∈ dom vol)
3 iblss2.3 . . 3 ((𝜑𝑥𝐴) → 𝐶𝑉)
4 iblss2.4 . . 3 ((𝜑𝑥 ∈ (𝐵𝐴)) → 𝐶 = 0)
5 iblss2.5 . . . 4 (𝜑 → (𝑥𝐴𝐶) ∈ 𝐿1)
6 iblmbf 23704 . . . 4 ((𝑥𝐴𝐶) ∈ 𝐿1 → (𝑥𝐴𝐶) ∈ MblFn)
75, 6syl 17 . . 3 (𝜑 → (𝑥𝐴𝐶) ∈ MblFn)
81, 2, 3, 4, 7mbfss 23583 . 2 (𝜑 → (𝑥𝐵𝐶) ∈ MblFn)
91adantr 472 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (0...3)) → 𝐴𝐵)
109sselda 3732 . . . . . . . . . 10 (((𝜑𝑘 ∈ (0...3)) ∧ 𝑥𝐴) → 𝑥𝐵)
1110iftrued 4226 . . . . . . . . 9 (((𝜑𝑘 ∈ (0...3)) ∧ 𝑥𝐴) → if(𝑥𝐵, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0) = if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0))
12 iftrue 4224 . . . . . . . . . 10 (𝑥𝐴 → if(𝑥𝐴, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0) = if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0))
1312adantl 473 . . . . . . . . 9 (((𝜑𝑘 ∈ (0...3)) ∧ 𝑥𝐴) → if(𝑥𝐴, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0) = if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0))
1411, 13eqtr4d 2785 . . . . . . . 8 (((𝜑𝑘 ∈ (0...3)) ∧ 𝑥𝐴) → if(𝑥𝐵, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0) = if(𝑥𝐴, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0))
15 ifid 4257 . . . . . . . . 9 if(𝑥𝐵, 0, 0) = 0
16 simplll 815 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑘 ∈ (0...3)) ∧ ¬ 𝑥𝐴) ∧ 𝑥𝐵) → 𝜑)
17 simpr 479 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑘 ∈ (0...3)) ∧ ¬ 𝑥𝐴) ∧ 𝑥𝐵) → 𝑥𝐵)
18 simplr 809 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑘 ∈ (0...3)) ∧ ¬ 𝑥𝐴) ∧ 𝑥𝐵) → ¬ 𝑥𝐴)
1917, 18eldifd 3714 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑘 ∈ (0...3)) ∧ ¬ 𝑥𝐴) ∧ 𝑥𝐵) → 𝑥 ∈ (𝐵𝐴))
2016, 19, 4syl2anc 696 . . . . . . . . . . . . . . . 16 ((((𝜑𝑘 ∈ (0...3)) ∧ ¬ 𝑥𝐴) ∧ 𝑥𝐵) → 𝐶 = 0)
2120oveq1d 6816 . . . . . . . . . . . . . . 15 ((((𝜑𝑘 ∈ (0...3)) ∧ ¬ 𝑥𝐴) ∧ 𝑥𝐵) → (𝐶 / (i↑𝑘)) = (0 / (i↑𝑘)))
22 simpllr 817 . . . . . . . . . . . . . . . 16 ((((𝜑𝑘 ∈ (0...3)) ∧ ¬ 𝑥𝐴) ∧ 𝑥𝐵) → 𝑘 ∈ (0...3))
23 elfzelz 12506 . . . . . . . . . . . . . . . 16 (𝑘 ∈ (0...3) → 𝑘 ∈ ℤ)
24 ax-icn 10158 . . . . . . . . . . . . . . . . 17 i ∈ ℂ
25 ine0 10628 . . . . . . . . . . . . . . . . 17 i ≠ 0
26 expclz 13050 . . . . . . . . . . . . . . . . . 18 ((i ∈ ℂ ∧ i ≠ 0 ∧ 𝑘 ∈ ℤ) → (i↑𝑘) ∈ ℂ)
27 expne0i 13057 . . . . . . . . . . . . . . . . . 18 ((i ∈ ℂ ∧ i ≠ 0 ∧ 𝑘 ∈ ℤ) → (i↑𝑘) ≠ 0)
2826, 27div0d 10963 . . . . . . . . . . . . . . . . 17 ((i ∈ ℂ ∧ i ≠ 0 ∧ 𝑘 ∈ ℤ) → (0 / (i↑𝑘)) = 0)
2924, 25, 28mp3an12 1551 . . . . . . . . . . . . . . . 16 (𝑘 ∈ ℤ → (0 / (i↑𝑘)) = 0)
3022, 23, 293syl 18 . . . . . . . . . . . . . . 15 ((((𝜑𝑘 ∈ (0...3)) ∧ ¬ 𝑥𝐴) ∧ 𝑥𝐵) → (0 / (i↑𝑘)) = 0)
3121, 30eqtrd 2782 . . . . . . . . . . . . . 14 ((((𝜑𝑘 ∈ (0...3)) ∧ ¬ 𝑥𝐴) ∧ 𝑥𝐵) → (𝐶 / (i↑𝑘)) = 0)
3231fveq2d 6344 . . . . . . . . . . . . 13 ((((𝜑𝑘 ∈ (0...3)) ∧ ¬ 𝑥𝐴) ∧ 𝑥𝐵) → (ℜ‘(𝐶 / (i↑𝑘))) = (ℜ‘0))
33 re0 14062 . . . . . . . . . . . . 13 (ℜ‘0) = 0
3432, 33syl6eq 2798 . . . . . . . . . . . 12 ((((𝜑𝑘 ∈ (0...3)) ∧ ¬ 𝑥𝐴) ∧ 𝑥𝐵) → (ℜ‘(𝐶 / (i↑𝑘))) = 0)
3534ifeq1d 4236 . . . . . . . . . . 11 ((((𝜑𝑘 ∈ (0...3)) ∧ ¬ 𝑥𝐴) ∧ 𝑥𝐵) → if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0) = if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), 0, 0))
36 ifid 4257 . . . . . . . . . . 11 if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), 0, 0) = 0
3735, 36syl6eq 2798 . . . . . . . . . 10 ((((𝜑𝑘 ∈ (0...3)) ∧ ¬ 𝑥𝐴) ∧ 𝑥𝐵) → if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0) = 0)
3837ifeq1da 4248 . . . . . . . . 9 (((𝜑𝑘 ∈ (0...3)) ∧ ¬ 𝑥𝐴) → if(𝑥𝐵, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0) = if(𝑥𝐵, 0, 0))
39 iffalse 4227 . . . . . . . . . 10 𝑥𝐴 → if(𝑥𝐴, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0) = 0)
4039adantl 473 . . . . . . . . 9 (((𝜑𝑘 ∈ (0...3)) ∧ ¬ 𝑥𝐴) → if(𝑥𝐴, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0) = 0)
4115, 38, 403eqtr4a 2808 . . . . . . . 8 (((𝜑𝑘 ∈ (0...3)) ∧ ¬ 𝑥𝐴) → if(𝑥𝐵, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0) = if(𝑥𝐴, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0))
4214, 41pm2.61dan 867 . . . . . . 7 ((𝜑𝑘 ∈ (0...3)) → if(𝑥𝐵, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0) = if(𝑥𝐴, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0))
43 ifan 4266 . . . . . . 7 if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0) = if(𝑥𝐵, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0)
44 ifan 4266 . . . . . . 7 if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0) = if(𝑥𝐴, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0)
4542, 43, 443eqtr4g 2807 . . . . . 6 ((𝜑𝑘 ∈ (0...3)) → if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0) = if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0))
4645mpteq2dv 4885 . . . . 5 ((𝜑𝑘 ∈ (0...3)) → (𝑥 ∈ ℝ ↦ if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0)) = (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0)))
4746fveq2d 6344 . . . 4 ((𝜑𝑘 ∈ (0...3)) → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0))) = (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0))))
48 eqidd 2749 . . . . . 6 (𝜑 → (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0)) = (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0)))
49 eqidd 2749 . . . . . 6 ((𝜑𝑥𝐴) → (ℜ‘(𝐶 / (i↑𝑘))) = (ℜ‘(𝐶 / (i↑𝑘))))
5048, 49, 5, 3iblitg 23705 . . . . 5 ((𝜑𝑘 ∈ ℤ) → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0))) ∈ ℝ)
5123, 50sylan2 492 . . . 4 ((𝜑𝑘 ∈ (0...3)) → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0))) ∈ ℝ)
5247, 51eqeltrd 2827 . . 3 ((𝜑𝑘 ∈ (0...3)) → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0))) ∈ ℝ)
5352ralrimiva 3092 . 2 (𝜑 → ∀𝑘 ∈ (0...3)(∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0))) ∈ ℝ)
54 eqidd 2749 . . 3 (𝜑 → (𝑥 ∈ ℝ ↦ if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0)) = (𝑥 ∈ ℝ ↦ if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0)))
55 eqidd 2749 . . 3 ((𝜑𝑥𝐵) → (ℜ‘(𝐶 / (i↑𝑘))) = (ℜ‘(𝐶 / (i↑𝑘))))
56 elun 3884 . . . . . 6 (𝑥 ∈ (𝐴 ∪ (𝐵𝐴)) ↔ (𝑥𝐴𝑥 ∈ (𝐵𝐴)))
57 undif2 4176 . . . . . . . 8 (𝐴 ∪ (𝐵𝐴)) = (𝐴𝐵)
58 ssequn1 3914 . . . . . . . . 9 (𝐴𝐵 ↔ (𝐴𝐵) = 𝐵)
591, 58sylib 208 . . . . . . . 8 (𝜑 → (𝐴𝐵) = 𝐵)
6057, 59syl5eq 2794 . . . . . . 7 (𝜑 → (𝐴 ∪ (𝐵𝐴)) = 𝐵)
6160eleq2d 2813 . . . . . 6 (𝜑 → (𝑥 ∈ (𝐴 ∪ (𝐵𝐴)) ↔ 𝑥𝐵))
6256, 61syl5bbr 274 . . . . 5 (𝜑 → ((𝑥𝐴𝑥 ∈ (𝐵𝐴)) ↔ 𝑥𝐵))
6362biimpar 503 . . . 4 ((𝜑𝑥𝐵) → (𝑥𝐴𝑥 ∈ (𝐵𝐴)))
647, 3mbfmptcl 23574 . . . . 5 ((𝜑𝑥𝐴) → 𝐶 ∈ ℂ)
65 0cn 10195 . . . . . 6 0 ∈ ℂ
664, 65syl6eqel 2835 . . . . 5 ((𝜑𝑥 ∈ (𝐵𝐴)) → 𝐶 ∈ ℂ)
6764, 66jaodan 861 . . . 4 ((𝜑 ∧ (𝑥𝐴𝑥 ∈ (𝐵𝐴))) → 𝐶 ∈ ℂ)
6863, 67syldan 488 . . 3 ((𝜑𝑥𝐵) → 𝐶 ∈ ℂ)
6954, 55, 68isibl2 23703 . 2 (𝜑 → ((𝑥𝐵𝐶) ∈ 𝐿1 ↔ ((𝑥𝐵𝐶) ∈ MblFn ∧ ∀𝑘 ∈ (0...3)(∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0))) ∈ ℝ)))
708, 53, 69mpbir2and 995 1 (𝜑 → (𝑥𝐵𝐶) ∈ 𝐿1)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wo 382  wa 383  w3a 1072   = wceq 1620  wcel 2127  wne 2920  wral 3038  cdif 3700  cun 3701  wss 3703  ifcif 4218   class class class wbr 4792  cmpt 4869  dom cdm 5254  cfv 6037  (class class class)co 6801  cc 10097  cr 10098  0cc0 10099  ici 10101  cle 10238   / cdiv 10847  3c3 11234  cz 11540  ...cfz 12490  cexp 13025  cre 14007  volcvol 23403  MblFncmbf 23553  2citg2 23555  𝐿1cibl 23556
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1859  ax-4 1874  ax-5 1976  ax-6 2042  ax-7 2078  ax-8 2129  ax-9 2136  ax-10 2156  ax-11 2171  ax-12 2184  ax-13 2379  ax-ext 2728  ax-rep 4911  ax-sep 4921  ax-nul 4929  ax-pow 4980  ax-pr 5043  ax-un 7102  ax-inf2 8699  ax-cnex 10155  ax-resscn 10156  ax-1cn 10157  ax-icn 10158  ax-addcl 10159  ax-addrcl 10160  ax-mulcl 10161  ax-mulrcl 10162  ax-mulcom 10163  ax-addass 10164  ax-mulass 10165  ax-distr 10166  ax-i2m1 10167  ax-1ne0 10168  ax-1rid 10169  ax-rnegex 10170  ax-rrecex 10171  ax-cnre 10172  ax-pre-lttri 10173  ax-pre-lttrn 10174  ax-pre-ltadd 10175  ax-pre-mulgt0 10176  ax-pre-sup 10177
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1623  df-fal 1626  df-ex 1842  df-nf 1847  df-sb 2035  df-eu 2599  df-mo 2600  df-clab 2735  df-cleq 2741  df-clel 2744  df-nfc 2879  df-ne 2921  df-nel 3024  df-ral 3043  df-rex 3044  df-reu 3045  df-rmo 3046  df-rab 3047  df-v 3330  df-sbc 3565  df-csb 3663  df-dif 3706  df-un 3708  df-in 3710  df-ss 3717  df-pss 3719  df-nul 4047  df-if 4219  df-pw 4292  df-sn 4310  df-pr 4312  df-tp 4314  df-op 4316  df-uni 4577  df-int 4616  df-iun 4662  df-br 4793  df-opab 4853  df-mpt 4870  df-tr 4893  df-id 5162  df-eprel 5167  df-po 5175  df-so 5176  df-fr 5213  df-se 5214  df-we 5215  df-xp 5260  df-rel 5261  df-cnv 5262  df-co 5263  df-dm 5264  df-rn 5265  df-res 5266  df-ima 5267  df-pred 5829  df-ord 5875  df-on 5876  df-lim 5877  df-suc 5878  df-iota 6000  df-fun 6039  df-fn 6040  df-f 6041  df-f1 6042  df-fo 6043  df-f1o 6044  df-fv 6045  df-isom 6046  df-riota 6762  df-ov 6804  df-oprab 6805  df-mpt2 6806  df-of 7050  df-om 7219  df-1st 7321  df-2nd 7322  df-wrecs 7564  df-recs 7625  df-rdg 7663  df-1o 7717  df-2o 7718  df-oadd 7721  df-er 7899  df-map 8013  df-pm 8014  df-en 8110  df-dom 8111  df-sdom 8112  df-fin 8113  df-sup 8501  df-inf 8502  df-oi 8568  df-card 8926  df-cda 9153  df-pnf 10239  df-mnf 10240  df-xr 10241  df-ltxr 10242  df-le 10243  df-sub 10431  df-neg 10432  df-div 10848  df-nn 11184  df-2 11242  df-3 11243  df-4 11244  df-n0 11456  df-z 11541  df-uz 11851  df-q 11953  df-rp 11997  df-xadd 12111  df-ioo 12343  df-ico 12345  df-icc 12346  df-fz 12491  df-fzo 12631  df-fl 12758  df-mod 12834  df-seq 12967  df-exp 13026  df-hash 13283  df-cj 14009  df-re 14010  df-im 14011  df-sqrt 14145  df-abs 14146  df-clim 14389  df-sum 14587  df-xmet 19912  df-met 19913  df-ovol 23404  df-vol 23405  df-mbf 23558  df-ibl 23561
This theorem is referenced by:  itgss3  23751  itgless  23753  ftc1anclem5  33771  ftc1anclem6  33772  areacirc  33787  arearect  38272  areaquad  38273
  Copyright terms: Public domain W3C validator