Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  iblss2 Structured version   Visualization version   GIF version

Theorem iblss2 23742
 Description: Change the domain of an integrability predicate. (Contributed by Mario Carneiro, 13-Aug-2014.) (Revised by Mario Carneiro, 23-Aug-2014.)
Hypotheses
Ref Expression
iblss2.1 (𝜑𝐴𝐵)
iblss2.2 (𝜑𝐵 ∈ dom vol)
iblss2.3 ((𝜑𝑥𝐴) → 𝐶𝑉)
iblss2.4 ((𝜑𝑥 ∈ (𝐵𝐴)) → 𝐶 = 0)
iblss2.5 (𝜑 → (𝑥𝐴𝐶) ∈ 𝐿1)
Assertion
Ref Expression
iblss2 (𝜑 → (𝑥𝐵𝐶) ∈ 𝐿1)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝜑,𝑥   𝑥,𝑉
Allowed substitution hint:   𝐶(𝑥)

Proof of Theorem iblss2
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 iblss2.1 . . 3 (𝜑𝐴𝐵)
2 iblss2.2 . . 3 (𝜑𝐵 ∈ dom vol)
3 iblss2.3 . . 3 ((𝜑𝑥𝐴) → 𝐶𝑉)
4 iblss2.4 . . 3 ((𝜑𝑥 ∈ (𝐵𝐴)) → 𝐶 = 0)
5 iblss2.5 . . . 4 (𝜑 → (𝑥𝐴𝐶) ∈ 𝐿1)
6 iblmbf 23704 . . . 4 ((𝑥𝐴𝐶) ∈ 𝐿1 → (𝑥𝐴𝐶) ∈ MblFn)
75, 6syl 17 . . 3 (𝜑 → (𝑥𝐴𝐶) ∈ MblFn)
81, 2, 3, 4, 7mbfss 23583 . 2 (𝜑 → (𝑥𝐵𝐶) ∈ MblFn)
91adantr 472 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (0...3)) → 𝐴𝐵)
109sselda 3732 . . . . . . . . . 10 (((𝜑𝑘 ∈ (0...3)) ∧ 𝑥𝐴) → 𝑥𝐵)
1110iftrued 4226 . . . . . . . . 9 (((𝜑𝑘 ∈ (0...3)) ∧ 𝑥𝐴) → if(𝑥𝐵, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0) = if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0))
12 iftrue 4224 . . . . . . . . . 10 (𝑥𝐴 → if(𝑥𝐴, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0) = if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0))
1312adantl 473 . . . . . . . . 9 (((𝜑𝑘 ∈ (0...3)) ∧ 𝑥𝐴) → if(𝑥𝐴, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0) = if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0))
1411, 13eqtr4d 2785 . . . . . . . 8 (((𝜑𝑘 ∈ (0...3)) ∧ 𝑥𝐴) → if(𝑥𝐵, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0) = if(𝑥𝐴, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0))
15 ifid 4257 . . . . . . . . 9 if(𝑥𝐵, 0, 0) = 0
16 simplll 815 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑘 ∈ (0...3)) ∧ ¬ 𝑥𝐴) ∧ 𝑥𝐵) → 𝜑)
17 simpr 479 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑘 ∈ (0...3)) ∧ ¬ 𝑥𝐴) ∧ 𝑥𝐵) → 𝑥𝐵)
18 simplr 809 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑘 ∈ (0...3)) ∧ ¬ 𝑥𝐴) ∧ 𝑥𝐵) → ¬ 𝑥𝐴)
1917, 18eldifd 3714 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑘 ∈ (0...3)) ∧ ¬ 𝑥𝐴) ∧ 𝑥𝐵) → 𝑥 ∈ (𝐵𝐴))
2016, 19, 4syl2anc 696 . . . . . . . . . . . . . . . 16 ((((𝜑𝑘 ∈ (0...3)) ∧ ¬ 𝑥𝐴) ∧ 𝑥𝐵) → 𝐶 = 0)
2120oveq1d 6816 . . . . . . . . . . . . . . 15 ((((𝜑𝑘 ∈ (0...3)) ∧ ¬ 𝑥𝐴) ∧ 𝑥𝐵) → (𝐶 / (i↑𝑘)) = (0 / (i↑𝑘)))
22 simpllr 817 . . . . . . . . . . . . . . . 16 ((((𝜑𝑘 ∈ (0...3)) ∧ ¬ 𝑥𝐴) ∧ 𝑥𝐵) → 𝑘 ∈ (0...3))
23 elfzelz 12506 . . . . . . . . . . . . . . . 16 (𝑘 ∈ (0...3) → 𝑘 ∈ ℤ)
24 ax-icn 10158 . . . . . . . . . . . . . . . . 17 i ∈ ℂ
25 ine0 10628 . . . . . . . . . . . . . . . . 17 i ≠ 0
26 expclz 13050 . . . . . . . . . . . . . . . . . 18 ((i ∈ ℂ ∧ i ≠ 0 ∧ 𝑘 ∈ ℤ) → (i↑𝑘) ∈ ℂ)
27 expne0i 13057 . . . . . . . . . . . . . . . . . 18 ((i ∈ ℂ ∧ i ≠ 0 ∧ 𝑘 ∈ ℤ) → (i↑𝑘) ≠ 0)
2826, 27div0d 10963 . . . . . . . . . . . . . . . . 17 ((i ∈ ℂ ∧ i ≠ 0 ∧ 𝑘 ∈ ℤ) → (0 / (i↑𝑘)) = 0)
2924, 25, 28mp3an12 1551 . . . . . . . . . . . . . . . 16 (𝑘 ∈ ℤ → (0 / (i↑𝑘)) = 0)
3022, 23, 293syl 18 . . . . . . . . . . . . . . 15 ((((𝜑𝑘 ∈ (0...3)) ∧ ¬ 𝑥𝐴) ∧ 𝑥𝐵) → (0 / (i↑𝑘)) = 0)
3121, 30eqtrd 2782 . . . . . . . . . . . . . 14 ((((𝜑𝑘 ∈ (0...3)) ∧ ¬ 𝑥𝐴) ∧ 𝑥𝐵) → (𝐶 / (i↑𝑘)) = 0)
3231fveq2d 6344 . . . . . . . . . . . . 13 ((((𝜑𝑘 ∈ (0...3)) ∧ ¬ 𝑥𝐴) ∧ 𝑥𝐵) → (ℜ‘(𝐶 / (i↑𝑘))) = (ℜ‘0))
33 re0 14062 . . . . . . . . . . . . 13 (ℜ‘0) = 0
3432, 33syl6eq 2798 . . . . . . . . . . . 12 ((((𝜑𝑘 ∈ (0...3)) ∧ ¬ 𝑥𝐴) ∧ 𝑥𝐵) → (ℜ‘(𝐶 / (i↑𝑘))) = 0)
3534ifeq1d 4236 . . . . . . . . . . 11 ((((𝜑𝑘 ∈ (0...3)) ∧ ¬ 𝑥𝐴) ∧ 𝑥𝐵) → if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0) = if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), 0, 0))
36 ifid 4257 . . . . . . . . . . 11 if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), 0, 0) = 0
3735, 36syl6eq 2798 . . . . . . . . . 10 ((((𝜑𝑘 ∈ (0...3)) ∧ ¬ 𝑥𝐴) ∧ 𝑥𝐵) → if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0) = 0)
3837ifeq1da 4248 . . . . . . . . 9 (((𝜑𝑘 ∈ (0...3)) ∧ ¬ 𝑥𝐴) → if(𝑥𝐵, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0) = if(𝑥𝐵, 0, 0))
39 iffalse 4227 . . . . . . . . . 10 𝑥𝐴 → if(𝑥𝐴, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0) = 0)
4039adantl 473 . . . . . . . . 9 (((𝜑𝑘 ∈ (0...3)) ∧ ¬ 𝑥𝐴) → if(𝑥𝐴, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0) = 0)
4115, 38, 403eqtr4a 2808 . . . . . . . 8 (((𝜑𝑘 ∈ (0...3)) ∧ ¬ 𝑥𝐴) → if(𝑥𝐵, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0) = if(𝑥𝐴, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0))
4214, 41pm2.61dan 867 . . . . . . 7 ((𝜑𝑘 ∈ (0...3)) → if(𝑥𝐵, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0) = if(𝑥𝐴, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0))
43 ifan 4266 . . . . . . 7 if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0) = if(𝑥𝐵, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0)
44 ifan 4266 . . . . . . 7 if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0) = if(𝑥𝐴, if(0 ≤ (ℜ‘(𝐶 / (i↑𝑘))), (ℜ‘(𝐶 / (i↑𝑘))), 0), 0)
4542, 43, 443eqtr4g 2807 . . . . . 6 ((𝜑𝑘 ∈ (0...3)) → if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0) = if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0))
4645mpteq2dv 4885 . . . . 5 ((𝜑𝑘 ∈ (0...3)) → (𝑥 ∈ ℝ ↦ if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0)) = (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0)))
4746fveq2d 6344 . . . 4 ((𝜑𝑘 ∈ (0...3)) → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0))) = (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0))))
48 eqidd 2749 . . . . . 6 (𝜑 → (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0)) = (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0)))
49 eqidd 2749 . . . . . 6 ((𝜑𝑥𝐴) → (ℜ‘(𝐶 / (i↑𝑘))) = (ℜ‘(𝐶 / (i↑𝑘))))
5048, 49, 5, 3iblitg 23705 . . . . 5 ((𝜑𝑘 ∈ ℤ) → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0))) ∈ ℝ)
5123, 50sylan2 492 . . . 4 ((𝜑𝑘 ∈ (0...3)) → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0))) ∈ ℝ)
5247, 51eqeltrd 2827 . . 3 ((𝜑𝑘 ∈ (0...3)) → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0))) ∈ ℝ)
5352ralrimiva 3092 . 2 (𝜑 → ∀𝑘 ∈ (0...3)(∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0))) ∈ ℝ)
54 eqidd 2749 . . 3 (𝜑 → (𝑥 ∈ ℝ ↦ if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0)) = (𝑥 ∈ ℝ ↦ if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0)))
55 eqidd 2749 . . 3 ((𝜑𝑥𝐵) → (ℜ‘(𝐶 / (i↑𝑘))) = (ℜ‘(𝐶 / (i↑𝑘))))
56 elun 3884 . . . . . 6 (𝑥 ∈ (𝐴 ∪ (𝐵𝐴)) ↔ (𝑥𝐴𝑥 ∈ (𝐵𝐴)))
57 undif2 4176 . . . . . . . 8 (𝐴 ∪ (𝐵𝐴)) = (𝐴𝐵)
58 ssequn1 3914 . . . . . . . . 9 (𝐴𝐵 ↔ (𝐴𝐵) = 𝐵)
591, 58sylib 208 . . . . . . . 8 (𝜑 → (𝐴𝐵) = 𝐵)
6057, 59syl5eq 2794 . . . . . . 7 (𝜑 → (𝐴 ∪ (𝐵𝐴)) = 𝐵)
6160eleq2d 2813 . . . . . 6 (𝜑 → (𝑥 ∈ (𝐴 ∪ (𝐵𝐴)) ↔ 𝑥𝐵))
6256, 61syl5bbr 274 . . . . 5 (𝜑 → ((𝑥𝐴𝑥 ∈ (𝐵𝐴)) ↔ 𝑥𝐵))
6362biimpar 503 . . . 4 ((𝜑𝑥𝐵) → (𝑥𝐴𝑥 ∈ (𝐵𝐴)))
647, 3mbfmptcl 23574 . . . . 5 ((𝜑𝑥𝐴) → 𝐶 ∈ ℂ)
65 0cn 10195 . . . . . 6 0 ∈ ℂ
664, 65syl6eqel 2835 . . . . 5 ((𝜑𝑥 ∈ (𝐵𝐴)) → 𝐶 ∈ ℂ)
6764, 66jaodan 861 . . . 4 ((𝜑 ∧ (𝑥𝐴𝑥 ∈ (𝐵𝐴))) → 𝐶 ∈ ℂ)
6863, 67syldan 488 . . 3 ((𝜑𝑥𝐵) → 𝐶 ∈ ℂ)
6954, 55, 68isibl2 23703 . 2 (𝜑 → ((𝑥𝐵𝐶) ∈ 𝐿1 ↔ ((𝑥𝐵𝐶) ∈ MblFn ∧ ∀𝑘 ∈ (0...3)(∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐵 ∧ 0 ≤ (ℜ‘(𝐶 / (i↑𝑘)))), (ℜ‘(𝐶 / (i↑𝑘))), 0))) ∈ ℝ)))
708, 53, 69mpbir2and 995 1 (𝜑 → (𝑥𝐵𝐶) ∈ 𝐿1)
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ∨ wo 382   ∧ wa 383   ∧ w3a 1072   = wceq 1620   ∈ wcel 2127   ≠ wne 2920  ∀wral 3038   ∖ cdif 3700   ∪ cun 3701   ⊆ wss 3703  ifcif 4218   class class class wbr 4792   ↦ cmpt 4869  dom cdm 5254  ‘cfv 6037  (class class class)co 6801  ℂcc 10097  ℝcr 10098  0cc0 10099  ici 10101   ≤ cle 10238   / cdiv 10847  3c3 11234  ℤcz 11540  ...cfz 12490  ↑cexp 13025  ℜcre 14007  volcvol 23403  MblFncmbf 23553  ∫2citg2 23555  𝐿1cibl 23556 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1859  ax-4 1874  ax-5 1976  ax-6 2042  ax-7 2078  ax-8 2129  ax-9 2136  ax-10 2156  ax-11 2171  ax-12 2184  ax-13 2379  ax-ext 2728  ax-rep 4911  ax-sep 4921  ax-nul 4929  ax-pow 4980  ax-pr 5043  ax-un 7102  ax-inf2 8699  ax-cnex 10155  ax-resscn 10156  ax-1cn 10157  ax-icn 10158  ax-addcl 10159  ax-addrcl 10160  ax-mulcl 10161  ax-mulrcl 10162  ax-mulcom 10163  ax-addass 10164  ax-mulass 10165  ax-distr 10166  ax-i2m1 10167  ax-1ne0 10168  ax-1rid 10169  ax-rnegex 10170  ax-rrecex 10171  ax-cnre 10172  ax-pre-lttri 10173  ax-pre-lttrn 10174  ax-pre-ltadd 10175  ax-pre-mulgt0 10176  ax-pre-sup 10177 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1623  df-fal 1626  df-ex 1842  df-nf 1847  df-sb 2035  df-eu 2599  df-mo 2600  df-clab 2735  df-cleq 2741  df-clel 2744  df-nfc 2879  df-ne 2921  df-nel 3024  df-ral 3043  df-rex 3044  df-reu 3045  df-rmo 3046  df-rab 3047  df-v 3330  df-sbc 3565  df-csb 3663  df-dif 3706  df-un 3708  df-in 3710  df-ss 3717  df-pss 3719  df-nul 4047  df-if 4219  df-pw 4292  df-sn 4310  df-pr 4312  df-tp 4314  df-op 4316  df-uni 4577  df-int 4616  df-iun 4662  df-br 4793  df-opab 4853  df-mpt 4870  df-tr 4893  df-id 5162  df-eprel 5167  df-po 5175  df-so 5176  df-fr 5213  df-se 5214  df-we 5215  df-xp 5260  df-rel 5261  df-cnv 5262  df-co 5263  df-dm 5264  df-rn 5265  df-res 5266  df-ima 5267  df-pred 5829  df-ord 5875  df-on 5876  df-lim 5877  df-suc 5878  df-iota 6000  df-fun 6039  df-fn 6040  df-f 6041  df-f1 6042  df-fo 6043  df-f1o 6044  df-fv 6045  df-isom 6046  df-riota 6762  df-ov 6804  df-oprab 6805  df-mpt2 6806  df-of 7050  df-om 7219  df-1st 7321  df-2nd 7322  df-wrecs 7564  df-recs 7625  df-rdg 7663  df-1o 7717  df-2o 7718  df-oadd 7721  df-er 7899  df-map 8013  df-pm 8014  df-en 8110  df-dom 8111  df-sdom 8112  df-fin 8113  df-sup 8501  df-inf 8502  df-oi 8568  df-card 8926  df-cda 9153  df-pnf 10239  df-mnf 10240  df-xr 10241  df-ltxr 10242  df-le 10243  df-sub 10431  df-neg 10432  df-div 10848  df-nn 11184  df-2 11242  df-3 11243  df-4 11244  df-n0 11456  df-z 11541  df-uz 11851  df-q 11953  df-rp 11997  df-xadd 12111  df-ioo 12343  df-ico 12345  df-icc 12346  df-fz 12491  df-fzo 12631  df-fl 12758  df-mod 12834  df-seq 12967  df-exp 13026  df-hash 13283  df-cj 14009  df-re 14010  df-im 14011  df-sqrt 14145  df-abs 14146  df-clim 14389  df-sum 14587  df-xmet 19912  df-met 19913  df-ovol 23404  df-vol 23405  df-mbf 23558  df-ibl 23561 This theorem is referenced by:  itgss3  23751  itgless  23753  ftc1anclem5  33771  ftc1anclem6  33772  areacirc  33787  arearect  38272  areaquad  38273
 Copyright terms: Public domain W3C validator