Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iblsplitf Structured version   Visualization version   GIF version

Theorem iblsplitf 40697
Description: A version of iblsplit 40693 using bound-variable hypotheses instead of distinct variable conditions" (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
iblsplitf.X 𝑥𝜑
iblsplitf.vol (𝜑 → (vol*‘(𝐴𝐵)) = 0)
iblsplitf.u (𝜑𝑈 = (𝐴𝐵))
iblsplitf.c ((𝜑𝑥𝑈) → 𝐶 ∈ ℂ)
iblsplitf.a (𝜑 → (𝑥𝐴𝐶) ∈ 𝐿1)
iblsplitf.b (𝜑 → (𝑥𝐵𝐶) ∈ 𝐿1)
Assertion
Ref Expression
iblsplitf (𝜑 → (𝑥𝑈𝐶) ∈ 𝐿1)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝑈
Allowed substitution hints:   𝜑(𝑥)   𝐶(𝑥)

Proof of Theorem iblsplitf
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 nfcv 2912 . . 3 𝑦𝐶
2 nfcsb1v 3696 . . 3 𝑥𝑦 / 𝑥𝐶
3 csbeq1a 3689 . . 3 (𝑥 = 𝑦𝐶 = 𝑦 / 𝑥𝐶)
41, 2, 3cbvmpt 4881 . 2 (𝑥𝑈𝐶) = (𝑦𝑈𝑦 / 𝑥𝐶)
5 iblsplitf.vol . . 3 (𝜑 → (vol*‘(𝐴𝐵)) = 0)
6 iblsplitf.u . . 3 (𝜑𝑈 = (𝐴𝐵))
7 simpr 471 . . . 4 ((𝜑𝑦𝑈) → 𝑦𝑈)
8 iblsplitf.X . . . . . 6 𝑥𝜑
9 nfv 1994 . . . . . 6 𝑥 𝑦𝑈
108, 9nfan 1979 . . . . 5 𝑥(𝜑𝑦𝑈)
11 iblsplitf.c . . . . . . 7 ((𝜑𝑥𝑈) → 𝐶 ∈ ℂ)
1211adantlr 686 . . . . . 6 (((𝜑𝑦𝑈) ∧ 𝑥𝑈) → 𝐶 ∈ ℂ)
1312ex 397 . . . . 5 ((𝜑𝑦𝑈) → (𝑥𝑈𝐶 ∈ ℂ))
1410, 13ralrimi 3105 . . . 4 ((𝜑𝑦𝑈) → ∀𝑥𝑈 𝐶 ∈ ℂ)
15 rspcsbela 4148 . . . 4 ((𝑦𝑈 ∧ ∀𝑥𝑈 𝐶 ∈ ℂ) → 𝑦 / 𝑥𝐶 ∈ ℂ)
167, 14, 15syl2anc 565 . . 3 ((𝜑𝑦𝑈) → 𝑦 / 𝑥𝐶 ∈ ℂ)
173equcoms 2104 . . . . . 6 (𝑦 = 𝑥𝐶 = 𝑦 / 𝑥𝐶)
1817eqcomd 2776 . . . . 5 (𝑦 = 𝑥𝑦 / 𝑥𝐶 = 𝐶)
192, 1, 18cbvmpt 4881 . . . 4 (𝑦𝐴𝑦 / 𝑥𝐶) = (𝑥𝐴𝐶)
20 iblsplitf.a . . . 4 (𝜑 → (𝑥𝐴𝐶) ∈ 𝐿1)
2119, 20syl5eqel 2853 . . 3 (𝜑 → (𝑦𝐴𝑦 / 𝑥𝐶) ∈ 𝐿1)
222, 1, 18cbvmpt 4881 . . . 4 (𝑦𝐵𝑦 / 𝑥𝐶) = (𝑥𝐵𝐶)
23 iblsplitf.b . . . 4 (𝜑 → (𝑥𝐵𝐶) ∈ 𝐿1)
2422, 23syl5eqel 2853 . . 3 (𝜑 → (𝑦𝐵𝑦 / 𝑥𝐶) ∈ 𝐿1)
255, 6, 16, 21, 24iblsplit 40693 . 2 (𝜑 → (𝑦𝑈𝑦 / 𝑥𝐶) ∈ 𝐿1)
264, 25syl5eqel 2853 1 (𝜑 → (𝑥𝑈𝐶) ∈ 𝐿1)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382   = wceq 1630  wnf 1855  wcel 2144  wral 3060  csb 3680  cun 3719  cin 3720  cmpt 4861  cfv 6031  cc 10135  0cc0 10137  vol*covol 23449  𝐿1cibl 23604
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1869  ax-4 1884  ax-5 1990  ax-6 2056  ax-7 2092  ax-8 2146  ax-9 2153  ax-10 2173  ax-11 2189  ax-12 2202  ax-13 2407  ax-ext 2750  ax-rep 4902  ax-sep 4912  ax-nul 4920  ax-pow 4971  ax-pr 5034  ax-un 7095  ax-inf2 8701  ax-cnex 10193  ax-resscn 10194  ax-1cn 10195  ax-icn 10196  ax-addcl 10197  ax-addrcl 10198  ax-mulcl 10199  ax-mulrcl 10200  ax-mulcom 10201  ax-addass 10202  ax-mulass 10203  ax-distr 10204  ax-i2m1 10205  ax-1ne0 10206  ax-1rid 10207  ax-rnegex 10208  ax-rrecex 10209  ax-cnre 10210  ax-pre-lttri 10211  ax-pre-lttrn 10212  ax-pre-ltadd 10213  ax-pre-mulgt0 10214  ax-pre-sup 10215  ax-addf 10216
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 827  df-3or 1071  df-3an 1072  df-tru 1633  df-fal 1636  df-ex 1852  df-nf 1857  df-sb 2049  df-eu 2621  df-mo 2622  df-clab 2757  df-cleq 2763  df-clel 2766  df-nfc 2901  df-ne 2943  df-nel 3046  df-ral 3065  df-rex 3066  df-reu 3067  df-rmo 3068  df-rab 3069  df-v 3351  df-sbc 3586  df-csb 3681  df-dif 3724  df-un 3726  df-in 3728  df-ss 3735  df-pss 3737  df-nul 4062  df-if 4224  df-pw 4297  df-sn 4315  df-pr 4317  df-tp 4319  df-op 4321  df-uni 4573  df-int 4610  df-iun 4654  df-disj 4753  df-br 4785  df-opab 4845  df-mpt 4862  df-tr 4885  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-se 5209  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-isom 6040  df-riota 6753  df-ov 6795  df-oprab 6796  df-mpt2 6797  df-of 7043  df-ofr 7044  df-om 7212  df-1st 7314  df-2nd 7315  df-wrecs 7558  df-recs 7620  df-rdg 7658  df-1o 7712  df-2o 7713  df-oadd 7716  df-er 7895  df-map 8010  df-pm 8011  df-en 8109  df-dom 8110  df-sdom 8111  df-fin 8112  df-fi 8472  df-sup 8503  df-inf 8504  df-oi 8570  df-card 8964  df-cda 9191  df-pnf 10277  df-mnf 10278  df-xr 10279  df-ltxr 10280  df-le 10281  df-sub 10469  df-neg 10470  df-div 10886  df-nn 11222  df-2 11280  df-3 11281  df-n0 11494  df-z 11579  df-uz 11888  df-q 11991  df-rp 12035  df-xneg 12150  df-xadd 12151  df-xmul 12152  df-ioo 12383  df-ico 12385  df-icc 12386  df-fz 12533  df-fzo 12673  df-fl 12800  df-seq 13008  df-exp 13067  df-hash 13321  df-cj 14046  df-re 14047  df-im 14048  df-sqrt 14182  df-abs 14183  df-clim 14426  df-sum 14624  df-rest 16290  df-topgen 16311  df-psmet 19952  df-xmet 19953  df-met 19954  df-bl 19955  df-mopn 19956  df-top 20918  df-topon 20935  df-bases 20970  df-cmp 21410  df-ovol 23451  df-vol 23452  df-mbf 23606  df-itg1 23607  df-itg2 23608  df-ibl 23609
This theorem is referenced by:  iblspltprt  40700
  Copyright terms: Public domain W3C validator