![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ibliccsinexp | Structured version Visualization version GIF version |
Description: sin^n on a closed interval is integrable. (Contributed by Glauco Siliprandi, 29-Jun-2017.) |
Ref | Expression |
---|---|
ibliccsinexp | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑁 ∈ ℕ0) → (𝑥 ∈ (𝐴[,]𝐵) ↦ ((sin‘𝑥)↑𝑁)) ∈ 𝐿1) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iccssre 12444 | . . . . . . . . 9 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,]𝐵) ⊆ ℝ) | |
2 | ax-resscn 10181 | . . . . . . . . 9 ⊢ ℝ ⊆ ℂ | |
3 | 1, 2 | syl6ss 3752 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,]𝐵) ⊆ ℂ) |
4 | 3 | sselda 3740 | . . . . . . 7 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑥 ∈ (𝐴[,]𝐵)) → 𝑥 ∈ ℂ) |
5 | 4 | 3adantl3 1174 | . . . . . 6 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑁 ∈ ℕ0) ∧ 𝑥 ∈ (𝐴[,]𝐵)) → 𝑥 ∈ ℂ) |
6 | 5 | sincld 15055 | . . . . . . 7 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑁 ∈ ℕ0) ∧ 𝑥 ∈ (𝐴[,]𝐵)) → (sin‘𝑥) ∈ ℂ) |
7 | simpl3 1232 | . . . . . . 7 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑁 ∈ ℕ0) ∧ 𝑥 ∈ (𝐴[,]𝐵)) → 𝑁 ∈ ℕ0) | |
8 | 6, 7 | expcld 13198 | . . . . . 6 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑁 ∈ ℕ0) ∧ 𝑥 ∈ (𝐴[,]𝐵)) → ((sin‘𝑥)↑𝑁) ∈ ℂ) |
9 | eqid 2756 | . . . . . . 7 ⊢ (𝑥 ∈ ℂ ↦ ((sin‘𝑥)↑𝑁)) = (𝑥 ∈ ℂ ↦ ((sin‘𝑥)↑𝑁)) | |
10 | 9 | fvmpt2 6449 | . . . . . 6 ⊢ ((𝑥 ∈ ℂ ∧ ((sin‘𝑥)↑𝑁) ∈ ℂ) → ((𝑥 ∈ ℂ ↦ ((sin‘𝑥)↑𝑁))‘𝑥) = ((sin‘𝑥)↑𝑁)) |
11 | 5, 8, 10 | syl2anc 696 | . . . . 5 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑁 ∈ ℕ0) ∧ 𝑥 ∈ (𝐴[,]𝐵)) → ((𝑥 ∈ ℂ ↦ ((sin‘𝑥)↑𝑁))‘𝑥) = ((sin‘𝑥)↑𝑁)) |
12 | 11 | eqcomd 2762 | . . . 4 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑁 ∈ ℕ0) ∧ 𝑥 ∈ (𝐴[,]𝐵)) → ((sin‘𝑥)↑𝑁) = ((𝑥 ∈ ℂ ↦ ((sin‘𝑥)↑𝑁))‘𝑥)) |
13 | 12 | mpteq2dva 4892 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑁 ∈ ℕ0) → (𝑥 ∈ (𝐴[,]𝐵) ↦ ((sin‘𝑥)↑𝑁)) = (𝑥 ∈ (𝐴[,]𝐵) ↦ ((𝑥 ∈ ℂ ↦ ((sin‘𝑥)↑𝑁))‘𝑥))) |
14 | nfmpt1 4895 | . . . 4 ⊢ Ⅎ𝑥(𝑥 ∈ ℂ ↦ ((sin‘𝑥)↑𝑁)) | |
15 | nfcv 2898 | . . . . 5 ⊢ Ⅎ𝑥sin | |
16 | sincn 24393 | . . . . . 6 ⊢ sin ∈ (ℂ–cn→ℂ) | |
17 | 16 | a1i 11 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑁 ∈ ℕ0) → sin ∈ (ℂ–cn→ℂ)) |
18 | simp3 1133 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑁 ∈ ℕ0) → 𝑁 ∈ ℕ0) | |
19 | 15, 17, 18 | expcnfg 40322 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑁 ∈ ℕ0) → (𝑥 ∈ ℂ ↦ ((sin‘𝑥)↑𝑁)) ∈ (ℂ–cn→ℂ)) |
20 | 3 | 3adant3 1127 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑁 ∈ ℕ0) → (𝐴[,]𝐵) ⊆ ℂ) |
21 | 14, 19, 20 | cncfmptss 40318 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑁 ∈ ℕ0) → (𝑥 ∈ (𝐴[,]𝐵) ↦ ((𝑥 ∈ ℂ ↦ ((sin‘𝑥)↑𝑁))‘𝑥)) ∈ ((𝐴[,]𝐵)–cn→ℂ)) |
22 | 13, 21 | eqeltrd 2835 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑁 ∈ ℕ0) → (𝑥 ∈ (𝐴[,]𝐵) ↦ ((sin‘𝑥)↑𝑁)) ∈ ((𝐴[,]𝐵)–cn→ℂ)) |
23 | cniccibl 23802 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝑥 ∈ (𝐴[,]𝐵) ↦ ((sin‘𝑥)↑𝑁)) ∈ ((𝐴[,]𝐵)–cn→ℂ)) → (𝑥 ∈ (𝐴[,]𝐵) ↦ ((sin‘𝑥)↑𝑁)) ∈ 𝐿1) | |
24 | 22, 23 | syld3an3 1516 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑁 ∈ ℕ0) → (𝑥 ∈ (𝐴[,]𝐵) ↦ ((sin‘𝑥)↑𝑁)) ∈ 𝐿1) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 ∧ w3a 1072 = wceq 1628 ∈ wcel 2135 ⊆ wss 3711 ↦ cmpt 4877 ‘cfv 6045 (class class class)co 6809 ℂcc 10122 ℝcr 10123 ℕ0cn0 11480 [,]cicc 12367 ↑cexp 13050 sincsin 14989 –cn→ccncf 22876 𝐿1cibl 23581 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1867 ax-4 1882 ax-5 1984 ax-6 2050 ax-7 2086 ax-8 2137 ax-9 2144 ax-10 2164 ax-11 2179 ax-12 2192 ax-13 2387 ax-ext 2736 ax-rep 4919 ax-sep 4929 ax-nul 4937 ax-pow 4988 ax-pr 5051 ax-un 7110 ax-inf2 8707 ax-cc 9445 ax-cnex 10180 ax-resscn 10181 ax-1cn 10182 ax-icn 10183 ax-addcl 10184 ax-addrcl 10185 ax-mulcl 10186 ax-mulrcl 10187 ax-mulcom 10188 ax-addass 10189 ax-mulass 10190 ax-distr 10191 ax-i2m1 10192 ax-1ne0 10193 ax-1rid 10194 ax-rnegex 10195 ax-rrecex 10196 ax-cnre 10197 ax-pre-lttri 10198 ax-pre-lttrn 10199 ax-pre-ltadd 10200 ax-pre-mulgt0 10201 ax-pre-sup 10202 ax-addf 10203 ax-mulf 10204 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1631 df-fal 1634 df-ex 1850 df-nf 1855 df-sb 2043 df-eu 2607 df-mo 2608 df-clab 2743 df-cleq 2749 df-clel 2752 df-nfc 2887 df-ne 2929 df-nel 3032 df-ral 3051 df-rex 3052 df-reu 3053 df-rmo 3054 df-rab 3055 df-v 3338 df-sbc 3573 df-csb 3671 df-dif 3714 df-un 3716 df-in 3718 df-ss 3725 df-pss 3727 df-nul 4055 df-if 4227 df-pw 4300 df-sn 4318 df-pr 4320 df-tp 4322 df-op 4324 df-uni 4585 df-int 4624 df-iun 4670 df-iin 4671 df-disj 4769 df-br 4801 df-opab 4861 df-mpt 4878 df-tr 4901 df-id 5170 df-eprel 5175 df-po 5183 df-so 5184 df-fr 5221 df-se 5222 df-we 5223 df-xp 5268 df-rel 5269 df-cnv 5270 df-co 5271 df-dm 5272 df-rn 5273 df-res 5274 df-ima 5275 df-pred 5837 df-ord 5883 df-on 5884 df-lim 5885 df-suc 5886 df-iota 6008 df-fun 6047 df-fn 6048 df-f 6049 df-f1 6050 df-fo 6051 df-f1o 6052 df-fv 6053 df-isom 6054 df-riota 6770 df-ov 6812 df-oprab 6813 df-mpt2 6814 df-of 7058 df-ofr 7059 df-om 7227 df-1st 7329 df-2nd 7330 df-supp 7460 df-wrecs 7572 df-recs 7633 df-rdg 7671 df-1o 7725 df-2o 7726 df-oadd 7729 df-omul 7730 df-er 7907 df-map 8021 df-pm 8022 df-ixp 8071 df-en 8118 df-dom 8119 df-sdom 8120 df-fin 8121 df-fsupp 8437 df-fi 8478 df-sup 8509 df-inf 8510 df-oi 8576 df-card 8951 df-acn 8954 df-cda 9178 df-pnf 10264 df-mnf 10265 df-xr 10266 df-ltxr 10267 df-le 10268 df-sub 10456 df-neg 10457 df-div 10873 df-nn 11209 df-2 11267 df-3 11268 df-4 11269 df-5 11270 df-6 11271 df-7 11272 df-8 11273 df-9 11274 df-n0 11481 df-z 11566 df-dec 11682 df-uz 11876 df-q 11978 df-rp 12022 df-xneg 12135 df-xadd 12136 df-xmul 12137 df-ioo 12368 df-ioc 12369 df-ico 12370 df-icc 12371 df-fz 12516 df-fzo 12656 df-fl 12783 df-mod 12859 df-seq 12992 df-exp 13051 df-fac 13251 df-bc 13280 df-hash 13308 df-shft 14002 df-cj 14034 df-re 14035 df-im 14036 df-sqrt 14170 df-abs 14171 df-limsup 14397 df-clim 14414 df-rlim 14415 df-sum 14612 df-ef 14993 df-sin 14995 df-struct 16057 df-ndx 16058 df-slot 16059 df-base 16061 df-sets 16062 df-ress 16063 df-plusg 16152 df-mulr 16153 df-starv 16154 df-sca 16155 df-vsca 16156 df-ip 16157 df-tset 16158 df-ple 16159 df-ds 16162 df-unif 16163 df-hom 16164 df-cco 16165 df-rest 16281 df-topn 16282 df-0g 16300 df-gsum 16301 df-topgen 16302 df-pt 16303 df-prds 16306 df-xrs 16360 df-qtop 16365 df-imas 16366 df-xps 16368 df-mre 16444 df-mrc 16445 df-acs 16447 df-mgm 17439 df-sgrp 17481 df-mnd 17492 df-submnd 17533 df-mulg 17738 df-cntz 17946 df-cmn 18391 df-psmet 19936 df-xmet 19937 df-met 19938 df-bl 19939 df-mopn 19940 df-fbas 19941 df-fg 19942 df-cnfld 19945 df-top 20897 df-topon 20914 df-topsp 20935 df-bases 20948 df-cld 21021 df-ntr 21022 df-cls 21023 df-nei 21100 df-lp 21138 df-perf 21139 df-cn 21229 df-cnp 21230 df-haus 21317 df-cmp 21388 df-tx 21563 df-hmeo 21756 df-fil 21847 df-fm 21939 df-flim 21940 df-flf 21941 df-xms 22322 df-ms 22323 df-tms 22324 df-cncf 22878 df-ovol 23429 df-vol 23430 df-mbf 23583 df-itg1 23584 df-itg2 23585 df-ibl 23586 df-0p 23632 df-limc 23825 df-dv 23826 |
This theorem is referenced by: iblioosinexp 40667 |
Copyright terms: Public domain | W3C validator |