Mathbox for Glauco Siliprandi < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iblempty Structured version   Visualization version   GIF version

Theorem iblempty 40695
 Description: The empty function is integrable. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Assertion
Ref Expression
iblempty ∅ ∈ 𝐿1

Proof of Theorem iblempty
Dummy variables 𝑥 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mbf0 23622 . 2 ∅ ∈ MblFn
2 fconstmpt 5302 . . . . . . 7 (ℝ × {0}) = (𝑥 ∈ ℝ ↦ 0)
32eqcomi 2780 . . . . . 6 (𝑥 ∈ ℝ ↦ 0) = (ℝ × {0})
43fveq2i 6336 . . . . 5 (∫2‘(𝑥 ∈ ℝ ↦ 0)) = (∫2‘(ℝ × {0}))
5 itg20 23724 . . . . 5 (∫2‘(ℝ × {0})) = 0
64, 5eqtri 2793 . . . 4 (∫2‘(𝑥 ∈ ℝ ↦ 0)) = 0
7 0re 10246 . . . 4 0 ∈ ℝ
86, 7eqeltri 2846 . . 3 (∫2‘(𝑥 ∈ ℝ ↦ 0)) ∈ ℝ
98rgenw 3073 . 2 𝑘 ∈ (0...3)(∫2‘(𝑥 ∈ ℝ ↦ 0)) ∈ ℝ
10 noel 4067 . . . . . . . . 9 ¬ 𝑥 ∈ ∅
1110intnanr 475 . . . . . . . 8 ¬ (𝑥 ∈ ∅ ∧ 0 ≤ (ℜ‘(0 / (i↑𝑘))))
1211iffalsei 4236 . . . . . . 7 if((𝑥 ∈ ∅ ∧ 0 ≤ (ℜ‘(0 / (i↑𝑘)))), (ℜ‘(0 / (i↑𝑘))), 0) = 0
1312eqcomi 2780 . . . . . 6 0 = if((𝑥 ∈ ∅ ∧ 0 ≤ (ℜ‘(0 / (i↑𝑘)))), (ℜ‘(0 / (i↑𝑘))), 0)
1413a1i 11 . . . . 5 ((⊤ ∧ 𝑥 ∈ ℝ) → 0 = if((𝑥 ∈ ∅ ∧ 0 ≤ (ℜ‘(0 / (i↑𝑘)))), (ℜ‘(0 / (i↑𝑘))), 0))
1514mpteq2dva 4879 . . . 4 (⊤ → (𝑥 ∈ ℝ ↦ 0) = (𝑥 ∈ ℝ ↦ if((𝑥 ∈ ∅ ∧ 0 ≤ (ℜ‘(0 / (i↑𝑘)))), (ℜ‘(0 / (i↑𝑘))), 0)))
16 eqidd 2772 . . . 4 ((⊤ ∧ 𝑥 ∈ ∅) → (ℜ‘(0 / (i↑𝑘))) = (ℜ‘(0 / (i↑𝑘))))
17 dm0 5476 . . . . 5 dom ∅ = ∅
1817a1i 11 . . . 4 (⊤ → dom ∅ = ∅)
1910intnan 474 . . . . 5 ¬ (⊤ ∧ 𝑥 ∈ ∅)
2019pm2.21i 117 . . . 4 ((⊤ ∧ 𝑥 ∈ ∅) → (∅‘𝑥) = 0)
2115, 16, 18, 20isibl 23752 . . 3 (⊤ → (∅ ∈ 𝐿1 ↔ (∅ ∈ MblFn ∧ ∀𝑘 ∈ (0...3)(∫2‘(𝑥 ∈ ℝ ↦ 0)) ∈ ℝ)))
2221trud 1641 . 2 (∅ ∈ 𝐿1 ↔ (∅ ∈ MblFn ∧ ∀𝑘 ∈ (0...3)(∫2‘(𝑥 ∈ ℝ ↦ 0)) ∈ ℝ))
231, 9, 22mpbir2an 690 1 ∅ ∈ 𝐿1
 Colors of variables: wff setvar class Syntax hints:   ↔ wb 196   ∧ wa 382   = wceq 1631  ⊤wtru 1632   ∈ wcel 2145  ∀wral 3061  ∅c0 4063  ifcif 4226  {csn 4317   class class class wbr 4787   ↦ cmpt 4864   × cxp 5248  dom cdm 5250  ‘cfv 6030  (class class class)co 6796  ℝcr 10141  0cc0 10142  ici 10144   ≤ cle 10281   / cdiv 10890  3c3 11277  ...cfz 12533  ↑cexp 13067  ℜcre 14045  MblFncmbf 23602  ∫2citg2 23604  𝐿1cibl 23605 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4905  ax-sep 4916  ax-nul 4924  ax-pow 4975  ax-pr 5035  ax-un 7100  ax-inf2 8706  ax-cnex 10198  ax-resscn 10199  ax-1cn 10200  ax-icn 10201  ax-addcl 10202  ax-addrcl 10203  ax-mulcl 10204  ax-mulrcl 10205  ax-mulcom 10206  ax-addass 10207  ax-mulass 10208  ax-distr 10209  ax-i2m1 10210  ax-1ne0 10211  ax-1rid 10212  ax-rnegex 10213  ax-rrecex 10214  ax-cnre 10215  ax-pre-lttri 10216  ax-pre-lttrn 10217  ax-pre-ltadd 10218  ax-pre-mulgt0 10219  ax-pre-sup 10220  ax-addf 10221 This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-fal 1637  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4227  df-pw 4300  df-sn 4318  df-pr 4320  df-tp 4322  df-op 4324  df-uni 4576  df-int 4613  df-iun 4657  df-disj 4756  df-br 4788  df-opab 4848  df-mpt 4865  df-tr 4888  df-id 5158  df-eprel 5163  df-po 5171  df-so 5172  df-fr 5209  df-se 5210  df-we 5211  df-xp 5256  df-rel 5257  df-cnv 5258  df-co 5259  df-dm 5260  df-rn 5261  df-res 5262  df-ima 5263  df-pred 5822  df-ord 5868  df-on 5869  df-lim 5870  df-suc 5871  df-iota 5993  df-fun 6032  df-fn 6033  df-f 6034  df-f1 6035  df-fo 6036  df-f1o 6037  df-fv 6038  df-isom 6039  df-riota 6757  df-ov 6799  df-oprab 6800  df-mpt2 6801  df-of 7048  df-ofr 7049  df-om 7217  df-1st 7319  df-2nd 7320  df-wrecs 7563  df-recs 7625  df-rdg 7663  df-1o 7717  df-2o 7718  df-oadd 7721  df-er 7900  df-map 8015  df-pm 8016  df-en 8114  df-dom 8115  df-sdom 8116  df-fin 8117  df-sup 8508  df-inf 8509  df-oi 8575  df-card 8969  df-cda 9196  df-pnf 10282  df-mnf 10283  df-xr 10284  df-ltxr 10285  df-le 10286  df-sub 10474  df-neg 10475  df-div 10891  df-nn 11227  df-2 11285  df-3 11286  df-n0 11500  df-z 11585  df-uz 11894  df-q 11997  df-rp 12036  df-xadd 12152  df-ioo 12384  df-ico 12386  df-icc 12387  df-fz 12534  df-fzo 12674  df-fl 12801  df-seq 13009  df-exp 13068  df-hash 13322  df-cj 14047  df-re 14048  df-im 14049  df-sqrt 14183  df-abs 14184  df-clim 14427  df-sum 14625  df-xmet 19954  df-met 19955  df-ovol 23452  df-vol 23453  df-mbf 23607  df-itg1 23608  df-itg2 23609  df-ibl 23610  df-0p 23657 This theorem is referenced by:  itgvol0  40698
 Copyright terms: Public domain W3C validator