MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iblcnlem1 Structured version   Visualization version   GIF version

Theorem iblcnlem1 23753
Description: Lemma for iblcnlem 23754. (Contributed by Mario Carneiro, 6-Aug-2014.) (Revised by Mario Carneiro, 23-Aug-2014.)
Hypotheses
Ref Expression
itgcnlem.r 𝑅 = (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘𝐵)), (ℜ‘𝐵), 0)))
itgcnlem.s 𝑆 = (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -(ℜ‘𝐵)), -(ℜ‘𝐵), 0)))
itgcnlem.t 𝑇 = (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℑ‘𝐵)), (ℑ‘𝐵), 0)))
itgcnlem.u 𝑈 = (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -(ℑ‘𝐵)), -(ℑ‘𝐵), 0)))
itgcnlem1.v ((𝜑𝑥𝐴) → 𝐵 ∈ ℂ)
Assertion
Ref Expression
iblcnlem1 (𝜑 → ((𝑥𝐴𝐵) ∈ 𝐿1 ↔ ((𝑥𝐴𝐵) ∈ MblFn ∧ (𝑅 ∈ ℝ ∧ 𝑆 ∈ ℝ) ∧ (𝑇 ∈ ℝ ∧ 𝑈 ∈ ℝ))))
Distinct variable groups:   𝑥,𝐴   𝜑,𝑥
Allowed substitution hints:   𝐵(𝑥)   𝑅(𝑥)   𝑆(𝑥)   𝑇(𝑥)   𝑈(𝑥)

Proof of Theorem iblcnlem1
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 eqidd 2761 . . 3 (𝜑 → (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0)) = (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0)))
2 eqidd 2761 . . 3 ((𝜑𝑥𝐴) → (ℜ‘(𝐵 / (i↑𝑘))) = (ℜ‘(𝐵 / (i↑𝑘))))
3 itgcnlem1.v . . 3 ((𝜑𝑥𝐴) → 𝐵 ∈ ℂ)
41, 2, 3isibl2 23732 . 2 (𝜑 → ((𝑥𝐴𝐵) ∈ 𝐿1 ↔ ((𝑥𝐴𝐵) ∈ MblFn ∧ ∀𝑘 ∈ (0...3)(∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0))) ∈ ℝ)))
5 c0ex 10226 . . . . . . . 8 0 ∈ V
6 1ex 10227 . . . . . . . 8 1 ∈ V
7 ax-icn 10187 . . . . . . . . . . 11 i ∈ ℂ
8 exp0 13058 . . . . . . . . . . 11 (i ∈ ℂ → (i↑0) = 1)
97, 8ax-mp 5 . . . . . . . . . 10 (i↑0) = 1
109itgvallem 23750 . . . . . . . . 9 (𝑘 = 0 → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0))) = (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / 1))), (ℜ‘(𝐵 / 1)), 0))))
1110eleq1d 2824 . . . . . . . 8 (𝑘 = 0 → ((∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0))) ∈ ℝ ↔ (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / 1))), (ℜ‘(𝐵 / 1)), 0))) ∈ ℝ))
12 exp1 13060 . . . . . . . . . . 11 (i ∈ ℂ → (i↑1) = i)
137, 12ax-mp 5 . . . . . . . . . 10 (i↑1) = i
1413itgvallem 23750 . . . . . . . . 9 (𝑘 = 1 → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0))) = (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / i))), (ℜ‘(𝐵 / i)), 0))))
1514eleq1d 2824 . . . . . . . 8 (𝑘 = 1 → ((∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0))) ∈ ℝ ↔ (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / i))), (ℜ‘(𝐵 / i)), 0))) ∈ ℝ))
165, 6, 11, 15ralpr 4382 . . . . . . 7 (∀𝑘 ∈ {0, 1} (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0))) ∈ ℝ ↔ ((∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / 1))), (ℜ‘(𝐵 / 1)), 0))) ∈ ℝ ∧ (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / i))), (ℜ‘(𝐵 / i)), 0))) ∈ ℝ))
173div1d 10985 . . . . . . . . . . . . . 14 ((𝜑𝑥𝐴) → (𝐵 / 1) = 𝐵)
1817fveq2d 6356 . . . . . . . . . . . . 13 ((𝜑𝑥𝐴) → (ℜ‘(𝐵 / 1)) = (ℜ‘𝐵))
1918ibllem 23730 . . . . . . . . . . . 12 (𝜑 → if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / 1))), (ℜ‘(𝐵 / 1)), 0) = if((𝑥𝐴 ∧ 0 ≤ (ℜ‘𝐵)), (ℜ‘𝐵), 0))
2019mpteq2dv 4897 . . . . . . . . . . 11 (𝜑 → (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / 1))), (ℜ‘(𝐵 / 1)), 0)) = (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘𝐵)), (ℜ‘𝐵), 0)))
2120fveq2d 6356 . . . . . . . . . 10 (𝜑 → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / 1))), (ℜ‘(𝐵 / 1)), 0))) = (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘𝐵)), (ℜ‘𝐵), 0))))
22 itgcnlem.r . . . . . . . . . 10 𝑅 = (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘𝐵)), (ℜ‘𝐵), 0)))
2321, 22syl6eqr 2812 . . . . . . . . 9 (𝜑 → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / 1))), (ℜ‘(𝐵 / 1)), 0))) = 𝑅)
2423eleq1d 2824 . . . . . . . 8 (𝜑 → ((∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / 1))), (ℜ‘(𝐵 / 1)), 0))) ∈ ℝ ↔ 𝑅 ∈ ℝ))
25 itgcnlem.t . . . . . . . . . 10 𝑇 = (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℑ‘𝐵)), (ℑ‘𝐵), 0)))
26 imval 14046 . . . . . . . . . . . . . 14 (𝐵 ∈ ℂ → (ℑ‘𝐵) = (ℜ‘(𝐵 / i)))
273, 26syl 17 . . . . . . . . . . . . 13 ((𝜑𝑥𝐴) → (ℑ‘𝐵) = (ℜ‘(𝐵 / i)))
2827ibllem 23730 . . . . . . . . . . . 12 (𝜑 → if((𝑥𝐴 ∧ 0 ≤ (ℑ‘𝐵)), (ℑ‘𝐵), 0) = if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / i))), (ℜ‘(𝐵 / i)), 0))
2928mpteq2dv 4897 . . . . . . . . . . 11 (𝜑 → (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℑ‘𝐵)), (ℑ‘𝐵), 0)) = (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / i))), (ℜ‘(𝐵 / i)), 0)))
3029fveq2d 6356 . . . . . . . . . 10 (𝜑 → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℑ‘𝐵)), (ℑ‘𝐵), 0))) = (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / i))), (ℜ‘(𝐵 / i)), 0))))
3125, 30syl5req 2807 . . . . . . . . 9 (𝜑 → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / i))), (ℜ‘(𝐵 / i)), 0))) = 𝑇)
3231eleq1d 2824 . . . . . . . 8 (𝜑 → ((∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / i))), (ℜ‘(𝐵 / i)), 0))) ∈ ℝ ↔ 𝑇 ∈ ℝ))
3324, 32anbi12d 749 . . . . . . 7 (𝜑 → (((∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / 1))), (ℜ‘(𝐵 / 1)), 0))) ∈ ℝ ∧ (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / i))), (ℜ‘(𝐵 / i)), 0))) ∈ ℝ) ↔ (𝑅 ∈ ℝ ∧ 𝑇 ∈ ℝ)))
3416, 33syl5bb 272 . . . . . 6 (𝜑 → (∀𝑘 ∈ {0, 1} (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0))) ∈ ℝ ↔ (𝑅 ∈ ℝ ∧ 𝑇 ∈ ℝ)))
35 2ex 11284 . . . . . . . 8 2 ∈ V
36 3ex 11288 . . . . . . . 8 3 ∈ V
37 i2 13159 . . . . . . . . . 10 (i↑2) = -1
3837itgvallem 23750 . . . . . . . . 9 (𝑘 = 2 → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0))) = (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / -1))), (ℜ‘(𝐵 / -1)), 0))))
3938eleq1d 2824 . . . . . . . 8 (𝑘 = 2 → ((∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0))) ∈ ℝ ↔ (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / -1))), (ℜ‘(𝐵 / -1)), 0))) ∈ ℝ))
40 i3 13160 . . . . . . . . . 10 (i↑3) = -i
4140itgvallem 23750 . . . . . . . . 9 (𝑘 = 3 → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0))) = (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / -i))), (ℜ‘(𝐵 / -i)), 0))))
4241eleq1d 2824 . . . . . . . 8 (𝑘 = 3 → ((∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0))) ∈ ℝ ↔ (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / -i))), (ℜ‘(𝐵 / -i)), 0))) ∈ ℝ))
4335, 36, 39, 42ralpr 4382 . . . . . . 7 (∀𝑘 ∈ {2, 3} (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0))) ∈ ℝ ↔ ((∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / -1))), (ℜ‘(𝐵 / -1)), 0))) ∈ ℝ ∧ (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / -i))), (ℜ‘(𝐵 / -i)), 0))) ∈ ℝ))
44 itgcnlem.s . . . . . . . . . 10 𝑆 = (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -(ℜ‘𝐵)), -(ℜ‘𝐵), 0)))
453renegd 14148 . . . . . . . . . . . . . 14 ((𝜑𝑥𝐴) → (ℜ‘-𝐵) = -(ℜ‘𝐵))
46 ax-1cn 10186 . . . . . . . . . . . . . . . . . . 19 1 ∈ ℂ
4746negnegi 10543 . . . . . . . . . . . . . . . . . 18 --1 = 1
4847oveq2i 6824 . . . . . . . . . . . . . . . . 17 (-𝐵 / --1) = (-𝐵 / 1)
493negcld 10571 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥𝐴) → -𝐵 ∈ ℂ)
5049div1d 10985 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥𝐴) → (-𝐵 / 1) = -𝐵)
5148, 50syl5eq 2806 . . . . . . . . . . . . . . . 16 ((𝜑𝑥𝐴) → (-𝐵 / --1) = -𝐵)
5246negcli 10541 . . . . . . . . . . . . . . . . . 18 -1 ∈ ℂ
53 neg1ne0 11318 . . . . . . . . . . . . . . . . . 18 -1 ≠ 0
54 div2neg 10940 . . . . . . . . . . . . . . . . . 18 ((𝐵 ∈ ℂ ∧ -1 ∈ ℂ ∧ -1 ≠ 0) → (-𝐵 / --1) = (𝐵 / -1))
5552, 53, 54mp3an23 1565 . . . . . . . . . . . . . . . . 17 (𝐵 ∈ ℂ → (-𝐵 / --1) = (𝐵 / -1))
563, 55syl 17 . . . . . . . . . . . . . . . 16 ((𝜑𝑥𝐴) → (-𝐵 / --1) = (𝐵 / -1))
5751, 56eqtr3d 2796 . . . . . . . . . . . . . . 15 ((𝜑𝑥𝐴) → -𝐵 = (𝐵 / -1))
5857fveq2d 6356 . . . . . . . . . . . . . 14 ((𝜑𝑥𝐴) → (ℜ‘-𝐵) = (ℜ‘(𝐵 / -1)))
5945, 58eqtr3d 2796 . . . . . . . . . . . . 13 ((𝜑𝑥𝐴) → -(ℜ‘𝐵) = (ℜ‘(𝐵 / -1)))
6059ibllem 23730 . . . . . . . . . . . 12 (𝜑 → if((𝑥𝐴 ∧ 0 ≤ -(ℜ‘𝐵)), -(ℜ‘𝐵), 0) = if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / -1))), (ℜ‘(𝐵 / -1)), 0))
6160mpteq2dv 4897 . . . . . . . . . . 11 (𝜑 → (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -(ℜ‘𝐵)), -(ℜ‘𝐵), 0)) = (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / -1))), (ℜ‘(𝐵 / -1)), 0)))
6261fveq2d 6356 . . . . . . . . . 10 (𝜑 → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -(ℜ‘𝐵)), -(ℜ‘𝐵), 0))) = (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / -1))), (ℜ‘(𝐵 / -1)), 0))))
6344, 62syl5req 2807 . . . . . . . . 9 (𝜑 → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / -1))), (ℜ‘(𝐵 / -1)), 0))) = 𝑆)
6463eleq1d 2824 . . . . . . . 8 (𝜑 → ((∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / -1))), (ℜ‘(𝐵 / -1)), 0))) ∈ ℝ ↔ 𝑆 ∈ ℝ))
65 itgcnlem.u . . . . . . . . . 10 𝑈 = (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -(ℑ‘𝐵)), -(ℑ‘𝐵), 0)))
66 imval 14046 . . . . . . . . . . . . . . 15 (-𝐵 ∈ ℂ → (ℑ‘-𝐵) = (ℜ‘(-𝐵 / i)))
6749, 66syl 17 . . . . . . . . . . . . . 14 ((𝜑𝑥𝐴) → (ℑ‘-𝐵) = (ℜ‘(-𝐵 / i)))
683imnegd 14149 . . . . . . . . . . . . . 14 ((𝜑𝑥𝐴) → (ℑ‘-𝐵) = -(ℑ‘𝐵))
697negnegi 10543 . . . . . . . . . . . . . . . . . 18 --i = i
7069eqcomi 2769 . . . . . . . . . . . . . . . . 17 i = --i
7170oveq2i 6824 . . . . . . . . . . . . . . . 16 (-𝐵 / i) = (-𝐵 / --i)
727negcli 10541 . . . . . . . . . . . . . . . . . 18 -i ∈ ℂ
73 ine0 10657 . . . . . . . . . . . . . . . . . . 19 i ≠ 0
747, 73negne0i 10548 . . . . . . . . . . . . . . . . . 18 -i ≠ 0
75 div2neg 10940 . . . . . . . . . . . . . . . . . 18 ((𝐵 ∈ ℂ ∧ -i ∈ ℂ ∧ -i ≠ 0) → (-𝐵 / --i) = (𝐵 / -i))
7672, 74, 75mp3an23 1565 . . . . . . . . . . . . . . . . 17 (𝐵 ∈ ℂ → (-𝐵 / --i) = (𝐵 / -i))
773, 76syl 17 . . . . . . . . . . . . . . . 16 ((𝜑𝑥𝐴) → (-𝐵 / --i) = (𝐵 / -i))
7871, 77syl5eq 2806 . . . . . . . . . . . . . . 15 ((𝜑𝑥𝐴) → (-𝐵 / i) = (𝐵 / -i))
7978fveq2d 6356 . . . . . . . . . . . . . 14 ((𝜑𝑥𝐴) → (ℜ‘(-𝐵 / i)) = (ℜ‘(𝐵 / -i)))
8067, 68, 793eqtr3d 2802 . . . . . . . . . . . . 13 ((𝜑𝑥𝐴) → -(ℑ‘𝐵) = (ℜ‘(𝐵 / -i)))
8180ibllem 23730 . . . . . . . . . . . 12 (𝜑 → if((𝑥𝐴 ∧ 0 ≤ -(ℑ‘𝐵)), -(ℑ‘𝐵), 0) = if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / -i))), (ℜ‘(𝐵 / -i)), 0))
8281mpteq2dv 4897 . . . . . . . . . . 11 (𝜑 → (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -(ℑ‘𝐵)), -(ℑ‘𝐵), 0)) = (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / -i))), (ℜ‘(𝐵 / -i)), 0)))
8382fveq2d 6356 . . . . . . . . . 10 (𝜑 → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -(ℑ‘𝐵)), -(ℑ‘𝐵), 0))) = (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / -i))), (ℜ‘(𝐵 / -i)), 0))))
8465, 83syl5req 2807 . . . . . . . . 9 (𝜑 → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / -i))), (ℜ‘(𝐵 / -i)), 0))) = 𝑈)
8584eleq1d 2824 . . . . . . . 8 (𝜑 → ((∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / -i))), (ℜ‘(𝐵 / -i)), 0))) ∈ ℝ ↔ 𝑈 ∈ ℝ))
8664, 85anbi12d 749 . . . . . . 7 (𝜑 → (((∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / -1))), (ℜ‘(𝐵 / -1)), 0))) ∈ ℝ ∧ (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / -i))), (ℜ‘(𝐵 / -i)), 0))) ∈ ℝ) ↔ (𝑆 ∈ ℝ ∧ 𝑈 ∈ ℝ)))
8743, 86syl5bb 272 . . . . . 6 (𝜑 → (∀𝑘 ∈ {2, 3} (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0))) ∈ ℝ ↔ (𝑆 ∈ ℝ ∧ 𝑈 ∈ ℝ)))
8834, 87anbi12d 749 . . . . 5 (𝜑 → ((∀𝑘 ∈ {0, 1} (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0))) ∈ ℝ ∧ ∀𝑘 ∈ {2, 3} (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0))) ∈ ℝ) ↔ ((𝑅 ∈ ℝ ∧ 𝑇 ∈ ℝ) ∧ (𝑆 ∈ ℝ ∧ 𝑈 ∈ ℝ))))
89 1le3 11436 . . . . . . . . . 10 1 ≤ 3
90 1eluzge0 11925 . . . . . . . . . . 11 1 ∈ (ℤ‘0)
91 3z 11602 . . . . . . . . . . 11 3 ∈ ℤ
92 elfz5 12527 . . . . . . . . . . 11 ((1 ∈ (ℤ‘0) ∧ 3 ∈ ℤ) → (1 ∈ (0...3) ↔ 1 ≤ 3))
9390, 91, 92mp2an 710 . . . . . . . . . 10 (1 ∈ (0...3) ↔ 1 ≤ 3)
9489, 93mpbir 221 . . . . . . . . 9 1 ∈ (0...3)
95 fzsplit 12560 . . . . . . . . 9 (1 ∈ (0...3) → (0...3) = ((0...1) ∪ ((1 + 1)...3)))
9694, 95ax-mp 5 . . . . . . . 8 (0...3) = ((0...1) ∪ ((1 + 1)...3))
97 0z 11580 . . . . . . . . . . 11 0 ∈ ℤ
98 fzpr 12589 . . . . . . . . . . 11 (0 ∈ ℤ → (0...(0 + 1)) = {0, (0 + 1)})
9997, 98ax-mp 5 . . . . . . . . . 10 (0...(0 + 1)) = {0, (0 + 1)}
100 1e0p1 11744 . . . . . . . . . . 11 1 = (0 + 1)
101100oveq2i 6824 . . . . . . . . . 10 (0...1) = (0...(0 + 1))
102100preq2i 4416 . . . . . . . . . 10 {0, 1} = {0, (0 + 1)}
10399, 101, 1023eqtr4i 2792 . . . . . . . . 9 (0...1) = {0, 1}
104 2z 11601 . . . . . . . . . . 11 2 ∈ ℤ
105 fzpr 12589 . . . . . . . . . . 11 (2 ∈ ℤ → (2...(2 + 1)) = {2, (2 + 1)})
106104, 105ax-mp 5 . . . . . . . . . 10 (2...(2 + 1)) = {2, (2 + 1)}
107 1p1e2 11326 . . . . . . . . . . 11 (1 + 1) = 2
108 df-3 11272 . . . . . . . . . . 11 3 = (2 + 1)
109107, 108oveq12i 6825 . . . . . . . . . 10 ((1 + 1)...3) = (2...(2 + 1))
110108preq2i 4416 . . . . . . . . . 10 {2, 3} = {2, (2 + 1)}
111106, 109, 1103eqtr4i 2792 . . . . . . . . 9 ((1 + 1)...3) = {2, 3}
112103, 111uneq12i 3908 . . . . . . . 8 ((0...1) ∪ ((1 + 1)...3)) = ({0, 1} ∪ {2, 3})
11396, 112eqtri 2782 . . . . . . 7 (0...3) = ({0, 1} ∪ {2, 3})
114113raleqi 3281 . . . . . 6 (∀𝑘 ∈ (0...3)(∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0))) ∈ ℝ ↔ ∀𝑘 ∈ ({0, 1} ∪ {2, 3})(∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0))) ∈ ℝ)
115 ralunb 3937 . . . . . 6 (∀𝑘 ∈ ({0, 1} ∪ {2, 3})(∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0))) ∈ ℝ ↔ (∀𝑘 ∈ {0, 1} (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0))) ∈ ℝ ∧ ∀𝑘 ∈ {2, 3} (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0))) ∈ ℝ))
116114, 115bitri 264 . . . . 5 (∀𝑘 ∈ (0...3)(∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0))) ∈ ℝ ↔ (∀𝑘 ∈ {0, 1} (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0))) ∈ ℝ ∧ ∀𝑘 ∈ {2, 3} (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0))) ∈ ℝ))
117 an4 900 . . . . 5 (((𝑅 ∈ ℝ ∧ 𝑆 ∈ ℝ) ∧ (𝑇 ∈ ℝ ∧ 𝑈 ∈ ℝ)) ↔ ((𝑅 ∈ ℝ ∧ 𝑇 ∈ ℝ) ∧ (𝑆 ∈ ℝ ∧ 𝑈 ∈ ℝ)))
11888, 116, 1173bitr4g 303 . . . 4 (𝜑 → (∀𝑘 ∈ (0...3)(∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0))) ∈ ℝ ↔ ((𝑅 ∈ ℝ ∧ 𝑆 ∈ ℝ) ∧ (𝑇 ∈ ℝ ∧ 𝑈 ∈ ℝ))))
119118anbi2d 742 . . 3 (𝜑 → (((𝑥𝐴𝐵) ∈ MblFn ∧ ∀𝑘 ∈ (0...3)(∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0))) ∈ ℝ) ↔ ((𝑥𝐴𝐵) ∈ MblFn ∧ ((𝑅 ∈ ℝ ∧ 𝑆 ∈ ℝ) ∧ (𝑇 ∈ ℝ ∧ 𝑈 ∈ ℝ)))))
120 3anass 1081 . . 3 (((𝑥𝐴𝐵) ∈ MblFn ∧ (𝑅 ∈ ℝ ∧ 𝑆 ∈ ℝ) ∧ (𝑇 ∈ ℝ ∧ 𝑈 ∈ ℝ)) ↔ ((𝑥𝐴𝐵) ∈ MblFn ∧ ((𝑅 ∈ ℝ ∧ 𝑆 ∈ ℝ) ∧ (𝑇 ∈ ℝ ∧ 𝑈 ∈ ℝ))))
121119, 120syl6bbr 278 . 2 (𝜑 → (((𝑥𝐴𝐵) ∈ MblFn ∧ ∀𝑘 ∈ (0...3)(∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0))) ∈ ℝ) ↔ ((𝑥𝐴𝐵) ∈ MblFn ∧ (𝑅 ∈ ℝ ∧ 𝑆 ∈ ℝ) ∧ (𝑇 ∈ ℝ ∧ 𝑈 ∈ ℝ))))
1224, 121bitrd 268 1 (𝜑 → ((𝑥𝐴𝐵) ∈ 𝐿1 ↔ ((𝑥𝐴𝐵) ∈ MblFn ∧ (𝑅 ∈ ℝ ∧ 𝑆 ∈ ℝ) ∧ (𝑇 ∈ ℝ ∧ 𝑈 ∈ ℝ))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383  w3a 1072   = wceq 1632  wcel 2139  wne 2932  wral 3050  cun 3713  ifcif 4230  {cpr 4323   class class class wbr 4804  cmpt 4881  cfv 6049  (class class class)co 6813  cc 10126  cr 10127  0cc0 10128  1c1 10129  ici 10130   + caddc 10131  cle 10267  -cneg 10459   / cdiv 10876  2c2 11262  3c3 11263  cz 11569  cuz 11879  ...cfz 12519  cexp 13054  cre 14036  cim 14037  MblFncmbf 23582  2citg2 23584  𝐿1cibl 23585
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7114  ax-cnex 10184  ax-resscn 10185  ax-1cn 10186  ax-icn 10187  ax-addcl 10188  ax-addrcl 10189  ax-mulcl 10190  ax-mulrcl 10191  ax-mulcom 10192  ax-addass 10193  ax-mulass 10194  ax-distr 10195  ax-i2m1 10196  ax-1ne0 10197  ax-1rid 10198  ax-rnegex 10199  ax-rrecex 10200  ax-cnre 10201  ax-pre-lttri 10202  ax-pre-lttrn 10203  ax-pre-ltadd 10204  ax-pre-mulgt0 10205
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6774  df-ov 6816  df-oprab 6817  df-mpt2 6818  df-om 7231  df-1st 7333  df-2nd 7334  df-wrecs 7576  df-recs 7637  df-rdg 7675  df-er 7911  df-en 8122  df-dom 8123  df-sdom 8124  df-pnf 10268  df-mnf 10269  df-xr 10270  df-ltxr 10271  df-le 10272  df-sub 10460  df-neg 10461  df-div 10877  df-nn 11213  df-2 11271  df-3 11272  df-n0 11485  df-z 11570  df-uz 11880  df-fz 12520  df-seq 12996  df-exp 13055  df-cj 14038  df-re 14039  df-im 14040  df-ibl 23590
This theorem is referenced by:  iblcnlem  23754  iblcn  23764  bddiblnc  33793
  Copyright terms: Public domain W3C validator