MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iblcnlem Structured version   Visualization version   GIF version

Theorem iblcnlem 23774
Description: Expand out the forall in isibl2 23752. (Contributed by Mario Carneiro, 6-Aug-2014.)
Hypotheses
Ref Expression
itgcnlem.r 𝑅 = (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘𝐵)), (ℜ‘𝐵), 0)))
itgcnlem.s 𝑆 = (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -(ℜ‘𝐵)), -(ℜ‘𝐵), 0)))
itgcnlem.t 𝑇 = (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℑ‘𝐵)), (ℑ‘𝐵), 0)))
itgcnlem.u 𝑈 = (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -(ℑ‘𝐵)), -(ℑ‘𝐵), 0)))
itgcnlem.v ((𝜑𝑥𝐴) → 𝐵𝑉)
Assertion
Ref Expression
iblcnlem (𝜑 → ((𝑥𝐴𝐵) ∈ 𝐿1 ↔ ((𝑥𝐴𝐵) ∈ MblFn ∧ (𝑅 ∈ ℝ ∧ 𝑆 ∈ ℝ) ∧ (𝑇 ∈ ℝ ∧ 𝑈 ∈ ℝ))))
Distinct variable groups:   𝑥,𝐴   𝜑,𝑥   𝑥,𝑉
Allowed substitution hints:   𝐵(𝑥)   𝑅(𝑥)   𝑆(𝑥)   𝑇(𝑥)   𝑈(𝑥)

Proof of Theorem iblcnlem
StepHypRef Expression
1 iblmbf 23753 . . 3 ((𝑥𝐴𝐵) ∈ 𝐿1 → (𝑥𝐴𝐵) ∈ MblFn)
21a1i 11 . 2 (𝜑 → ((𝑥𝐴𝐵) ∈ 𝐿1 → (𝑥𝐴𝐵) ∈ MblFn))
3 simp1 1129 . . 3 (((𝑥𝐴𝐵) ∈ MblFn ∧ (𝑅 ∈ ℝ ∧ 𝑆 ∈ ℝ) ∧ (𝑇 ∈ ℝ ∧ 𝑈 ∈ ℝ)) → (𝑥𝐴𝐵) ∈ MblFn)
43a1i 11 . 2 (𝜑 → (((𝑥𝐴𝐵) ∈ MblFn ∧ (𝑅 ∈ ℝ ∧ 𝑆 ∈ ℝ) ∧ (𝑇 ∈ ℝ ∧ 𝑈 ∈ ℝ)) → (𝑥𝐴𝐵) ∈ MblFn))
5 eqid 2770 . . . . . 6 (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘if(𝐵 ∈ ℂ, 𝐵, 0))), (ℜ‘if(𝐵 ∈ ℂ, 𝐵, 0)), 0))) = (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘if(𝐵 ∈ ℂ, 𝐵, 0))), (ℜ‘if(𝐵 ∈ ℂ, 𝐵, 0)), 0)))
6 eqid 2770 . . . . . 6 (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -(ℜ‘if(𝐵 ∈ ℂ, 𝐵, 0))), -(ℜ‘if(𝐵 ∈ ℂ, 𝐵, 0)), 0))) = (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -(ℜ‘if(𝐵 ∈ ℂ, 𝐵, 0))), -(ℜ‘if(𝐵 ∈ ℂ, 𝐵, 0)), 0)))
7 eqid 2770 . . . . . 6 (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℑ‘if(𝐵 ∈ ℂ, 𝐵, 0))), (ℑ‘if(𝐵 ∈ ℂ, 𝐵, 0)), 0))) = (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℑ‘if(𝐵 ∈ ℂ, 𝐵, 0))), (ℑ‘if(𝐵 ∈ ℂ, 𝐵, 0)), 0)))
8 eqid 2770 . . . . . 6 (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -(ℑ‘if(𝐵 ∈ ℂ, 𝐵, 0))), -(ℑ‘if(𝐵 ∈ ℂ, 𝐵, 0)), 0))) = (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -(ℑ‘if(𝐵 ∈ ℂ, 𝐵, 0))), -(ℑ‘if(𝐵 ∈ ℂ, 𝐵, 0)), 0)))
9 0cn 10233 . . . . . . . 8 0 ∈ ℂ
109elimel 4287 . . . . . . 7 if(𝐵 ∈ ℂ, 𝐵, 0) ∈ ℂ
1110a1i 11 . . . . . 6 ((𝜑𝑥𝐴) → if(𝐵 ∈ ℂ, 𝐵, 0) ∈ ℂ)
125, 6, 7, 8, 11iblcnlem1 23773 . . . . 5 (𝜑 → ((𝑥𝐴 ↦ if(𝐵 ∈ ℂ, 𝐵, 0)) ∈ 𝐿1 ↔ ((𝑥𝐴 ↦ if(𝐵 ∈ ℂ, 𝐵, 0)) ∈ MblFn ∧ ((∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘if(𝐵 ∈ ℂ, 𝐵, 0))), (ℜ‘if(𝐵 ∈ ℂ, 𝐵, 0)), 0))) ∈ ℝ ∧ (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -(ℜ‘if(𝐵 ∈ ℂ, 𝐵, 0))), -(ℜ‘if(𝐵 ∈ ℂ, 𝐵, 0)), 0))) ∈ ℝ) ∧ ((∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℑ‘if(𝐵 ∈ ℂ, 𝐵, 0))), (ℑ‘if(𝐵 ∈ ℂ, 𝐵, 0)), 0))) ∈ ℝ ∧ (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -(ℑ‘if(𝐵 ∈ ℂ, 𝐵, 0))), -(ℑ‘if(𝐵 ∈ ℂ, 𝐵, 0)), 0))) ∈ ℝ))))
1312adantr 466 . . . 4 ((𝜑 ∧ (𝑥𝐴𝐵) ∈ MblFn) → ((𝑥𝐴 ↦ if(𝐵 ∈ ℂ, 𝐵, 0)) ∈ 𝐿1 ↔ ((𝑥𝐴 ↦ if(𝐵 ∈ ℂ, 𝐵, 0)) ∈ MblFn ∧ ((∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘if(𝐵 ∈ ℂ, 𝐵, 0))), (ℜ‘if(𝐵 ∈ ℂ, 𝐵, 0)), 0))) ∈ ℝ ∧ (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -(ℜ‘if(𝐵 ∈ ℂ, 𝐵, 0))), -(ℜ‘if(𝐵 ∈ ℂ, 𝐵, 0)), 0))) ∈ ℝ) ∧ ((∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℑ‘if(𝐵 ∈ ℂ, 𝐵, 0))), (ℑ‘if(𝐵 ∈ ℂ, 𝐵, 0)), 0))) ∈ ℝ ∧ (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -(ℑ‘if(𝐵 ∈ ℂ, 𝐵, 0))), -(ℑ‘if(𝐵 ∈ ℂ, 𝐵, 0)), 0))) ∈ ℝ))))
14 eqid 2770 . . . . . 6 𝐴 = 𝐴
15 mbff 23612 . . . . . . . . 9 ((𝑥𝐴𝐵) ∈ MblFn → (𝑥𝐴𝐵):dom (𝑥𝐴𝐵)⟶ℂ)
16 eqid 2770 . . . . . . . . . . . 12 (𝑥𝐴𝐵) = (𝑥𝐴𝐵)
17 itgcnlem.v . . . . . . . . . . . 12 ((𝜑𝑥𝐴) → 𝐵𝑉)
1816, 17dmmptd 6164 . . . . . . . . . . 11 (𝜑 → dom (𝑥𝐴𝐵) = 𝐴)
1918feq2d 6171 . . . . . . . . . 10 (𝜑 → ((𝑥𝐴𝐵):dom (𝑥𝐴𝐵)⟶ℂ ↔ (𝑥𝐴𝐵):𝐴⟶ℂ))
2019biimpa 462 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝐴𝐵):dom (𝑥𝐴𝐵)⟶ℂ) → (𝑥𝐴𝐵):𝐴⟶ℂ)
2115, 20sylan2 572 . . . . . . . 8 ((𝜑 ∧ (𝑥𝐴𝐵) ∈ MblFn) → (𝑥𝐴𝐵):𝐴⟶ℂ)
2216fmpt 6523 . . . . . . . 8 (∀𝑥𝐴 𝐵 ∈ ℂ ↔ (𝑥𝐴𝐵):𝐴⟶ℂ)
2321, 22sylibr 224 . . . . . . 7 ((𝜑 ∧ (𝑥𝐴𝐵) ∈ MblFn) → ∀𝑥𝐴 𝐵 ∈ ℂ)
24 iftrue 4229 . . . . . . . 8 (𝐵 ∈ ℂ → if(𝐵 ∈ ℂ, 𝐵, 0) = 𝐵)
2524ralimi 3100 . . . . . . 7 (∀𝑥𝐴 𝐵 ∈ ℂ → ∀𝑥𝐴 if(𝐵 ∈ ℂ, 𝐵, 0) = 𝐵)
2623, 25syl 17 . . . . . 6 ((𝜑 ∧ (𝑥𝐴𝐵) ∈ MblFn) → ∀𝑥𝐴 if(𝐵 ∈ ℂ, 𝐵, 0) = 𝐵)
27 mpteq12 4868 . . . . . 6 ((𝐴 = 𝐴 ∧ ∀𝑥𝐴 if(𝐵 ∈ ℂ, 𝐵, 0) = 𝐵) → (𝑥𝐴 ↦ if(𝐵 ∈ ℂ, 𝐵, 0)) = (𝑥𝐴𝐵))
2814, 26, 27sylancr 567 . . . . 5 ((𝜑 ∧ (𝑥𝐴𝐵) ∈ MblFn) → (𝑥𝐴 ↦ if(𝐵 ∈ ℂ, 𝐵, 0)) = (𝑥𝐴𝐵))
2928eleq1d 2834 . . . 4 ((𝜑 ∧ (𝑥𝐴𝐵) ∈ MblFn) → ((𝑥𝐴 ↦ if(𝐵 ∈ ℂ, 𝐵, 0)) ∈ 𝐿1 ↔ (𝑥𝐴𝐵) ∈ 𝐿1))
3028eleq1d 2834 . . . . 5 ((𝜑 ∧ (𝑥𝐴𝐵) ∈ MblFn) → ((𝑥𝐴 ↦ if(𝐵 ∈ ℂ, 𝐵, 0)) ∈ MblFn ↔ (𝑥𝐴𝐵) ∈ MblFn))
31 eqid 2770 . . . . . . . . . 10 ℝ = ℝ
3224imim2i 16 . . . . . . . . . . . . . . . 16 ((𝑥𝐴𝐵 ∈ ℂ) → (𝑥𝐴 → if(𝐵 ∈ ℂ, 𝐵, 0) = 𝐵))
3332imp 393 . . . . . . . . . . . . . . 15 (((𝑥𝐴𝐵 ∈ ℂ) ∧ 𝑥𝐴) → if(𝐵 ∈ ℂ, 𝐵, 0) = 𝐵)
3433fveq2d 6336 . . . . . . . . . . . . . 14 (((𝑥𝐴𝐵 ∈ ℂ) ∧ 𝑥𝐴) → (ℜ‘if(𝐵 ∈ ℂ, 𝐵, 0)) = (ℜ‘𝐵))
3534ibllem 23750 . . . . . . . . . . . . 13 ((𝑥𝐴𝐵 ∈ ℂ) → if((𝑥𝐴 ∧ 0 ≤ (ℜ‘if(𝐵 ∈ ℂ, 𝐵, 0))), (ℜ‘if(𝐵 ∈ ℂ, 𝐵, 0)), 0) = if((𝑥𝐴 ∧ 0 ≤ (ℜ‘𝐵)), (ℜ‘𝐵), 0))
3635a1d 25 . . . . . . . . . . . 12 ((𝑥𝐴𝐵 ∈ ℂ) → (𝑥 ∈ ℝ → if((𝑥𝐴 ∧ 0 ≤ (ℜ‘if(𝐵 ∈ ℂ, 𝐵, 0))), (ℜ‘if(𝐵 ∈ ℂ, 𝐵, 0)), 0) = if((𝑥𝐴 ∧ 0 ≤ (ℜ‘𝐵)), (ℜ‘𝐵), 0)))
3736ralimi2 3097 . . . . . . . . . . 11 (∀𝑥𝐴 𝐵 ∈ ℂ → ∀𝑥 ∈ ℝ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘if(𝐵 ∈ ℂ, 𝐵, 0))), (ℜ‘if(𝐵 ∈ ℂ, 𝐵, 0)), 0) = if((𝑥𝐴 ∧ 0 ≤ (ℜ‘𝐵)), (ℜ‘𝐵), 0))
3823, 37syl 17 . . . . . . . . . 10 ((𝜑 ∧ (𝑥𝐴𝐵) ∈ MblFn) → ∀𝑥 ∈ ℝ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘if(𝐵 ∈ ℂ, 𝐵, 0))), (ℜ‘if(𝐵 ∈ ℂ, 𝐵, 0)), 0) = if((𝑥𝐴 ∧ 0 ≤ (ℜ‘𝐵)), (ℜ‘𝐵), 0))
39 mpteq12 4868 . . . . . . . . . 10 ((ℝ = ℝ ∧ ∀𝑥 ∈ ℝ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘if(𝐵 ∈ ℂ, 𝐵, 0))), (ℜ‘if(𝐵 ∈ ℂ, 𝐵, 0)), 0) = if((𝑥𝐴 ∧ 0 ≤ (ℜ‘𝐵)), (ℜ‘𝐵), 0)) → (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘if(𝐵 ∈ ℂ, 𝐵, 0))), (ℜ‘if(𝐵 ∈ ℂ, 𝐵, 0)), 0)) = (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘𝐵)), (ℜ‘𝐵), 0)))
4031, 38, 39sylancr 567 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝐴𝐵) ∈ MblFn) → (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘if(𝐵 ∈ ℂ, 𝐵, 0))), (ℜ‘if(𝐵 ∈ ℂ, 𝐵, 0)), 0)) = (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘𝐵)), (ℜ‘𝐵), 0)))
4140fveq2d 6336 . . . . . . . 8 ((𝜑 ∧ (𝑥𝐴𝐵) ∈ MblFn) → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘if(𝐵 ∈ ℂ, 𝐵, 0))), (ℜ‘if(𝐵 ∈ ℂ, 𝐵, 0)), 0))) = (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘𝐵)), (ℜ‘𝐵), 0))))
42 itgcnlem.r . . . . . . . 8 𝑅 = (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘𝐵)), (ℜ‘𝐵), 0)))
4341, 42syl6eqr 2822 . . . . . . 7 ((𝜑 ∧ (𝑥𝐴𝐵) ∈ MblFn) → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘if(𝐵 ∈ ℂ, 𝐵, 0))), (ℜ‘if(𝐵 ∈ ℂ, 𝐵, 0)), 0))) = 𝑅)
4443eleq1d 2834 . . . . . 6 ((𝜑 ∧ (𝑥𝐴𝐵) ∈ MblFn) → ((∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘if(𝐵 ∈ ℂ, 𝐵, 0))), (ℜ‘if(𝐵 ∈ ℂ, 𝐵, 0)), 0))) ∈ ℝ ↔ 𝑅 ∈ ℝ))
4534negeqd 10476 . . . . . . . . . . . . . 14 (((𝑥𝐴𝐵 ∈ ℂ) ∧ 𝑥𝐴) → -(ℜ‘if(𝐵 ∈ ℂ, 𝐵, 0)) = -(ℜ‘𝐵))
4645ibllem 23750 . . . . . . . . . . . . 13 ((𝑥𝐴𝐵 ∈ ℂ) → if((𝑥𝐴 ∧ 0 ≤ -(ℜ‘if(𝐵 ∈ ℂ, 𝐵, 0))), -(ℜ‘if(𝐵 ∈ ℂ, 𝐵, 0)), 0) = if((𝑥𝐴 ∧ 0 ≤ -(ℜ‘𝐵)), -(ℜ‘𝐵), 0))
4746a1d 25 . . . . . . . . . . . 12 ((𝑥𝐴𝐵 ∈ ℂ) → (𝑥 ∈ ℝ → if((𝑥𝐴 ∧ 0 ≤ -(ℜ‘if(𝐵 ∈ ℂ, 𝐵, 0))), -(ℜ‘if(𝐵 ∈ ℂ, 𝐵, 0)), 0) = if((𝑥𝐴 ∧ 0 ≤ -(ℜ‘𝐵)), -(ℜ‘𝐵), 0)))
4847ralimi2 3097 . . . . . . . . . . 11 (∀𝑥𝐴 𝐵 ∈ ℂ → ∀𝑥 ∈ ℝ if((𝑥𝐴 ∧ 0 ≤ -(ℜ‘if(𝐵 ∈ ℂ, 𝐵, 0))), -(ℜ‘if(𝐵 ∈ ℂ, 𝐵, 0)), 0) = if((𝑥𝐴 ∧ 0 ≤ -(ℜ‘𝐵)), -(ℜ‘𝐵), 0))
4923, 48syl 17 . . . . . . . . . 10 ((𝜑 ∧ (𝑥𝐴𝐵) ∈ MblFn) → ∀𝑥 ∈ ℝ if((𝑥𝐴 ∧ 0 ≤ -(ℜ‘if(𝐵 ∈ ℂ, 𝐵, 0))), -(ℜ‘if(𝐵 ∈ ℂ, 𝐵, 0)), 0) = if((𝑥𝐴 ∧ 0 ≤ -(ℜ‘𝐵)), -(ℜ‘𝐵), 0))
50 mpteq12 4868 . . . . . . . . . 10 ((ℝ = ℝ ∧ ∀𝑥 ∈ ℝ if((𝑥𝐴 ∧ 0 ≤ -(ℜ‘if(𝐵 ∈ ℂ, 𝐵, 0))), -(ℜ‘if(𝐵 ∈ ℂ, 𝐵, 0)), 0) = if((𝑥𝐴 ∧ 0 ≤ -(ℜ‘𝐵)), -(ℜ‘𝐵), 0)) → (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -(ℜ‘if(𝐵 ∈ ℂ, 𝐵, 0))), -(ℜ‘if(𝐵 ∈ ℂ, 𝐵, 0)), 0)) = (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -(ℜ‘𝐵)), -(ℜ‘𝐵), 0)))
5131, 49, 50sylancr 567 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝐴𝐵) ∈ MblFn) → (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -(ℜ‘if(𝐵 ∈ ℂ, 𝐵, 0))), -(ℜ‘if(𝐵 ∈ ℂ, 𝐵, 0)), 0)) = (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -(ℜ‘𝐵)), -(ℜ‘𝐵), 0)))
5251fveq2d 6336 . . . . . . . 8 ((𝜑 ∧ (𝑥𝐴𝐵) ∈ MblFn) → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -(ℜ‘if(𝐵 ∈ ℂ, 𝐵, 0))), -(ℜ‘if(𝐵 ∈ ℂ, 𝐵, 0)), 0))) = (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -(ℜ‘𝐵)), -(ℜ‘𝐵), 0))))
53 itgcnlem.s . . . . . . . 8 𝑆 = (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -(ℜ‘𝐵)), -(ℜ‘𝐵), 0)))
5452, 53syl6eqr 2822 . . . . . . 7 ((𝜑 ∧ (𝑥𝐴𝐵) ∈ MblFn) → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -(ℜ‘if(𝐵 ∈ ℂ, 𝐵, 0))), -(ℜ‘if(𝐵 ∈ ℂ, 𝐵, 0)), 0))) = 𝑆)
5554eleq1d 2834 . . . . . 6 ((𝜑 ∧ (𝑥𝐴𝐵) ∈ MblFn) → ((∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -(ℜ‘if(𝐵 ∈ ℂ, 𝐵, 0))), -(ℜ‘if(𝐵 ∈ ℂ, 𝐵, 0)), 0))) ∈ ℝ ↔ 𝑆 ∈ ℝ))
5644, 55anbi12d 608 . . . . 5 ((𝜑 ∧ (𝑥𝐴𝐵) ∈ MblFn) → (((∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘if(𝐵 ∈ ℂ, 𝐵, 0))), (ℜ‘if(𝐵 ∈ ℂ, 𝐵, 0)), 0))) ∈ ℝ ∧ (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -(ℜ‘if(𝐵 ∈ ℂ, 𝐵, 0))), -(ℜ‘if(𝐵 ∈ ℂ, 𝐵, 0)), 0))) ∈ ℝ) ↔ (𝑅 ∈ ℝ ∧ 𝑆 ∈ ℝ)))
5733fveq2d 6336 . . . . . . . . . . . . . 14 (((𝑥𝐴𝐵 ∈ ℂ) ∧ 𝑥𝐴) → (ℑ‘if(𝐵 ∈ ℂ, 𝐵, 0)) = (ℑ‘𝐵))
5857ibllem 23750 . . . . . . . . . . . . 13 ((𝑥𝐴𝐵 ∈ ℂ) → if((𝑥𝐴 ∧ 0 ≤ (ℑ‘if(𝐵 ∈ ℂ, 𝐵, 0))), (ℑ‘if(𝐵 ∈ ℂ, 𝐵, 0)), 0) = if((𝑥𝐴 ∧ 0 ≤ (ℑ‘𝐵)), (ℑ‘𝐵), 0))
5958a1d 25 . . . . . . . . . . . 12 ((𝑥𝐴𝐵 ∈ ℂ) → (𝑥 ∈ ℝ → if((𝑥𝐴 ∧ 0 ≤ (ℑ‘if(𝐵 ∈ ℂ, 𝐵, 0))), (ℑ‘if(𝐵 ∈ ℂ, 𝐵, 0)), 0) = if((𝑥𝐴 ∧ 0 ≤ (ℑ‘𝐵)), (ℑ‘𝐵), 0)))
6059ralimi2 3097 . . . . . . . . . . 11 (∀𝑥𝐴 𝐵 ∈ ℂ → ∀𝑥 ∈ ℝ if((𝑥𝐴 ∧ 0 ≤ (ℑ‘if(𝐵 ∈ ℂ, 𝐵, 0))), (ℑ‘if(𝐵 ∈ ℂ, 𝐵, 0)), 0) = if((𝑥𝐴 ∧ 0 ≤ (ℑ‘𝐵)), (ℑ‘𝐵), 0))
6123, 60syl 17 . . . . . . . . . 10 ((𝜑 ∧ (𝑥𝐴𝐵) ∈ MblFn) → ∀𝑥 ∈ ℝ if((𝑥𝐴 ∧ 0 ≤ (ℑ‘if(𝐵 ∈ ℂ, 𝐵, 0))), (ℑ‘if(𝐵 ∈ ℂ, 𝐵, 0)), 0) = if((𝑥𝐴 ∧ 0 ≤ (ℑ‘𝐵)), (ℑ‘𝐵), 0))
62 mpteq12 4868 . . . . . . . . . 10 ((ℝ = ℝ ∧ ∀𝑥 ∈ ℝ if((𝑥𝐴 ∧ 0 ≤ (ℑ‘if(𝐵 ∈ ℂ, 𝐵, 0))), (ℑ‘if(𝐵 ∈ ℂ, 𝐵, 0)), 0) = if((𝑥𝐴 ∧ 0 ≤ (ℑ‘𝐵)), (ℑ‘𝐵), 0)) → (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℑ‘if(𝐵 ∈ ℂ, 𝐵, 0))), (ℑ‘if(𝐵 ∈ ℂ, 𝐵, 0)), 0)) = (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℑ‘𝐵)), (ℑ‘𝐵), 0)))
6331, 61, 62sylancr 567 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝐴𝐵) ∈ MblFn) → (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℑ‘if(𝐵 ∈ ℂ, 𝐵, 0))), (ℑ‘if(𝐵 ∈ ℂ, 𝐵, 0)), 0)) = (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℑ‘𝐵)), (ℑ‘𝐵), 0)))
6463fveq2d 6336 . . . . . . . 8 ((𝜑 ∧ (𝑥𝐴𝐵) ∈ MblFn) → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℑ‘if(𝐵 ∈ ℂ, 𝐵, 0))), (ℑ‘if(𝐵 ∈ ℂ, 𝐵, 0)), 0))) = (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℑ‘𝐵)), (ℑ‘𝐵), 0))))
65 itgcnlem.t . . . . . . . 8 𝑇 = (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℑ‘𝐵)), (ℑ‘𝐵), 0)))
6664, 65syl6eqr 2822 . . . . . . 7 ((𝜑 ∧ (𝑥𝐴𝐵) ∈ MblFn) → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℑ‘if(𝐵 ∈ ℂ, 𝐵, 0))), (ℑ‘if(𝐵 ∈ ℂ, 𝐵, 0)), 0))) = 𝑇)
6766eleq1d 2834 . . . . . 6 ((𝜑 ∧ (𝑥𝐴𝐵) ∈ MblFn) → ((∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℑ‘if(𝐵 ∈ ℂ, 𝐵, 0))), (ℑ‘if(𝐵 ∈ ℂ, 𝐵, 0)), 0))) ∈ ℝ ↔ 𝑇 ∈ ℝ))
6857negeqd 10476 . . . . . . . . . . . . . 14 (((𝑥𝐴𝐵 ∈ ℂ) ∧ 𝑥𝐴) → -(ℑ‘if(𝐵 ∈ ℂ, 𝐵, 0)) = -(ℑ‘𝐵))
6968ibllem 23750 . . . . . . . . . . . . 13 ((𝑥𝐴𝐵 ∈ ℂ) → if((𝑥𝐴 ∧ 0 ≤ -(ℑ‘if(𝐵 ∈ ℂ, 𝐵, 0))), -(ℑ‘if(𝐵 ∈ ℂ, 𝐵, 0)), 0) = if((𝑥𝐴 ∧ 0 ≤ -(ℑ‘𝐵)), -(ℑ‘𝐵), 0))
7069a1d 25 . . . . . . . . . . . 12 ((𝑥𝐴𝐵 ∈ ℂ) → (𝑥 ∈ ℝ → if((𝑥𝐴 ∧ 0 ≤ -(ℑ‘if(𝐵 ∈ ℂ, 𝐵, 0))), -(ℑ‘if(𝐵 ∈ ℂ, 𝐵, 0)), 0) = if((𝑥𝐴 ∧ 0 ≤ -(ℑ‘𝐵)), -(ℑ‘𝐵), 0)))
7170ralimi2 3097 . . . . . . . . . . 11 (∀𝑥𝐴 𝐵 ∈ ℂ → ∀𝑥 ∈ ℝ if((𝑥𝐴 ∧ 0 ≤ -(ℑ‘if(𝐵 ∈ ℂ, 𝐵, 0))), -(ℑ‘if(𝐵 ∈ ℂ, 𝐵, 0)), 0) = if((𝑥𝐴 ∧ 0 ≤ -(ℑ‘𝐵)), -(ℑ‘𝐵), 0))
7223, 71syl 17 . . . . . . . . . 10 ((𝜑 ∧ (𝑥𝐴𝐵) ∈ MblFn) → ∀𝑥 ∈ ℝ if((𝑥𝐴 ∧ 0 ≤ -(ℑ‘if(𝐵 ∈ ℂ, 𝐵, 0))), -(ℑ‘if(𝐵 ∈ ℂ, 𝐵, 0)), 0) = if((𝑥𝐴 ∧ 0 ≤ -(ℑ‘𝐵)), -(ℑ‘𝐵), 0))
73 mpteq12 4868 . . . . . . . . . 10 ((ℝ = ℝ ∧ ∀𝑥 ∈ ℝ if((𝑥𝐴 ∧ 0 ≤ -(ℑ‘if(𝐵 ∈ ℂ, 𝐵, 0))), -(ℑ‘if(𝐵 ∈ ℂ, 𝐵, 0)), 0) = if((𝑥𝐴 ∧ 0 ≤ -(ℑ‘𝐵)), -(ℑ‘𝐵), 0)) → (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -(ℑ‘if(𝐵 ∈ ℂ, 𝐵, 0))), -(ℑ‘if(𝐵 ∈ ℂ, 𝐵, 0)), 0)) = (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -(ℑ‘𝐵)), -(ℑ‘𝐵), 0)))
7431, 72, 73sylancr 567 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝐴𝐵) ∈ MblFn) → (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -(ℑ‘if(𝐵 ∈ ℂ, 𝐵, 0))), -(ℑ‘if(𝐵 ∈ ℂ, 𝐵, 0)), 0)) = (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -(ℑ‘𝐵)), -(ℑ‘𝐵), 0)))
7574fveq2d 6336 . . . . . . . 8 ((𝜑 ∧ (𝑥𝐴𝐵) ∈ MblFn) → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -(ℑ‘if(𝐵 ∈ ℂ, 𝐵, 0))), -(ℑ‘if(𝐵 ∈ ℂ, 𝐵, 0)), 0))) = (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -(ℑ‘𝐵)), -(ℑ‘𝐵), 0))))
76 itgcnlem.u . . . . . . . 8 𝑈 = (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -(ℑ‘𝐵)), -(ℑ‘𝐵), 0)))
7775, 76syl6eqr 2822 . . . . . . 7 ((𝜑 ∧ (𝑥𝐴𝐵) ∈ MblFn) → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -(ℑ‘if(𝐵 ∈ ℂ, 𝐵, 0))), -(ℑ‘if(𝐵 ∈ ℂ, 𝐵, 0)), 0))) = 𝑈)
7877eleq1d 2834 . . . . . 6 ((𝜑 ∧ (𝑥𝐴𝐵) ∈ MblFn) → ((∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -(ℑ‘if(𝐵 ∈ ℂ, 𝐵, 0))), -(ℑ‘if(𝐵 ∈ ℂ, 𝐵, 0)), 0))) ∈ ℝ ↔ 𝑈 ∈ ℝ))
7967, 78anbi12d 608 . . . . 5 ((𝜑 ∧ (𝑥𝐴𝐵) ∈ MblFn) → (((∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℑ‘if(𝐵 ∈ ℂ, 𝐵, 0))), (ℑ‘if(𝐵 ∈ ℂ, 𝐵, 0)), 0))) ∈ ℝ ∧ (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -(ℑ‘if(𝐵 ∈ ℂ, 𝐵, 0))), -(ℑ‘if(𝐵 ∈ ℂ, 𝐵, 0)), 0))) ∈ ℝ) ↔ (𝑇 ∈ ℝ ∧ 𝑈 ∈ ℝ)))
8030, 56, 793anbi123d 1546 . . . 4 ((𝜑 ∧ (𝑥𝐴𝐵) ∈ MblFn) → (((𝑥𝐴 ↦ if(𝐵 ∈ ℂ, 𝐵, 0)) ∈ MblFn ∧ ((∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘if(𝐵 ∈ ℂ, 𝐵, 0))), (ℜ‘if(𝐵 ∈ ℂ, 𝐵, 0)), 0))) ∈ ℝ ∧ (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -(ℜ‘if(𝐵 ∈ ℂ, 𝐵, 0))), -(ℜ‘if(𝐵 ∈ ℂ, 𝐵, 0)), 0))) ∈ ℝ) ∧ ((∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℑ‘if(𝐵 ∈ ℂ, 𝐵, 0))), (ℑ‘if(𝐵 ∈ ℂ, 𝐵, 0)), 0))) ∈ ℝ ∧ (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -(ℑ‘if(𝐵 ∈ ℂ, 𝐵, 0))), -(ℑ‘if(𝐵 ∈ ℂ, 𝐵, 0)), 0))) ∈ ℝ)) ↔ ((𝑥𝐴𝐵) ∈ MblFn ∧ (𝑅 ∈ ℝ ∧ 𝑆 ∈ ℝ) ∧ (𝑇 ∈ ℝ ∧ 𝑈 ∈ ℝ))))
8113, 29, 803bitr3d 298 . . 3 ((𝜑 ∧ (𝑥𝐴𝐵) ∈ MblFn) → ((𝑥𝐴𝐵) ∈ 𝐿1 ↔ ((𝑥𝐴𝐵) ∈ MblFn ∧ (𝑅 ∈ ℝ ∧ 𝑆 ∈ ℝ) ∧ (𝑇 ∈ ℝ ∧ 𝑈 ∈ ℝ))))
8281ex 397 . 2 (𝜑 → ((𝑥𝐴𝐵) ∈ MblFn → ((𝑥𝐴𝐵) ∈ 𝐿1 ↔ ((𝑥𝐴𝐵) ∈ MblFn ∧ (𝑅 ∈ ℝ ∧ 𝑆 ∈ ℝ) ∧ (𝑇 ∈ ℝ ∧ 𝑈 ∈ ℝ)))))
832, 4, 82pm5.21ndd 368 1 (𝜑 → ((𝑥𝐴𝐵) ∈ 𝐿1 ↔ ((𝑥𝐴𝐵) ∈ MblFn ∧ (𝑅 ∈ ℝ ∧ 𝑆 ∈ ℝ) ∧ (𝑇 ∈ ℝ ∧ 𝑈 ∈ ℝ))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 382  w3a 1070   = wceq 1630  wcel 2144  wral 3060  ifcif 4223   class class class wbr 4784  cmpt 4861  dom cdm 5249  wf 6027  cfv 6031  cc 10135  cr 10136  0cc0 10137  cle 10276  -cneg 10468  cre 14044  cim 14045  MblFncmbf 23601  2citg2 23603  𝐿1cibl 23604
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1869  ax-4 1884  ax-5 1990  ax-6 2056  ax-7 2092  ax-8 2146  ax-9 2153  ax-10 2173  ax-11 2189  ax-12 2202  ax-13 2407  ax-ext 2750  ax-sep 4912  ax-nul 4920  ax-pow 4971  ax-pr 5034  ax-un 7095  ax-cnex 10193  ax-resscn 10194  ax-1cn 10195  ax-icn 10196  ax-addcl 10197  ax-addrcl 10198  ax-mulcl 10199  ax-mulrcl 10200  ax-mulcom 10201  ax-addass 10202  ax-mulass 10203  ax-distr 10204  ax-i2m1 10205  ax-1ne0 10206  ax-1rid 10207  ax-rnegex 10208  ax-rrecex 10209  ax-cnre 10210  ax-pre-lttri 10211  ax-pre-lttrn 10212  ax-pre-ltadd 10213  ax-pre-mulgt0 10214
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 827  df-3or 1071  df-3an 1072  df-tru 1633  df-ex 1852  df-nf 1857  df-sb 2049  df-eu 2621  df-mo 2622  df-clab 2757  df-cleq 2763  df-clel 2766  df-nfc 2901  df-ne 2943  df-nel 3046  df-ral 3065  df-rex 3066  df-reu 3067  df-rmo 3068  df-rab 3069  df-v 3351  df-sbc 3586  df-csb 3681  df-dif 3724  df-un 3726  df-in 3728  df-ss 3735  df-pss 3737  df-nul 4062  df-if 4224  df-pw 4297  df-sn 4315  df-pr 4317  df-tp 4319  df-op 4321  df-uni 4573  df-iun 4654  df-br 4785  df-opab 4845  df-mpt 4862  df-tr 4885  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-riota 6753  df-ov 6795  df-oprab 6796  df-mpt2 6797  df-om 7212  df-1st 7314  df-2nd 7315  df-wrecs 7558  df-recs 7620  df-rdg 7658  df-er 7895  df-pm 8011  df-en 8109  df-dom 8110  df-sdom 8111  df-pnf 10277  df-mnf 10278  df-xr 10279  df-ltxr 10280  df-le 10281  df-sub 10469  df-neg 10470  df-div 10886  df-nn 11222  df-2 11280  df-3 11281  df-n0 11494  df-z 11579  df-uz 11888  df-fz 12533  df-seq 13008  df-exp 13067  df-cj 14046  df-re 14047  df-im 14048  df-mbf 23606  df-ibl 23609
This theorem is referenced by:  itgcnlem  23775  iblrelem  23776  ibladd  23806  ibladdnc  33792
  Copyright terms: Public domain W3C validator