![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ibir | Structured version Visualization version GIF version |
Description: Inference that converts a biconditional implied by one of its arguments, into an implication. (Contributed by NM, 22-Jul-2004.) |
Ref | Expression |
---|---|
ibir.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜑)) |
Ref | Expression |
---|---|
ibir | ⊢ (𝜑 → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ibir.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜑)) | |
2 | 1 | bicomd 213 | . 2 ⊢ (𝜑 → (𝜑 ↔ 𝜓)) |
3 | 2 | ibi 256 | 1 ⊢ (𝜑 → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 197 |
This theorem is referenced by: elpr2OLD 4337 eusv2i 5004 ffdm 6215 ov 6937 ovg 6956 oacl 7776 nnacl 7852 elpm2r 8033 cdaxpdom 9195 cdafi 9196 cfcof 9280 hargch 9679 uzaddcl 11929 expcllem 13057 lcmfval 15528 lcmf0val 15529 mreunirn 16455 filunirn 21879 ustelimasn 22219 metustfbas 22555 usgreqdrusgr 26666 pjini 28859 fzspl 29851 f1ocnt 29860 xrge0tsmsbi 30087 bnj983 31320 poimirlem16 33730 poimirlem19 33733 poimirlem25 33739 ac6s6 34285 fouriersw 40943 etransclem25 40971 bits0oALTV 42094 uzlidlring 42431 linccl 42705 |
Copyright terms: Public domain | W3C validator |