![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ibar | Structured version Visualization version GIF version |
Description: Introduction of antecedent as conjunct. (Contributed by NM, 5-Dec-1995.) |
Ref | Expression |
---|---|
ibar | ⊢ (𝜑 → (𝜓 ↔ (𝜑 ∧ 𝜓))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm3.2 462 | . 2 ⊢ (𝜑 → (𝜓 → (𝜑 ∧ 𝜓))) | |
2 | simpr 476 | . 2 ⊢ ((𝜑 ∧ 𝜓) → 𝜓) | |
3 | 1, 2 | impbid1 215 | 1 ⊢ (𝜑 → (𝜓 ↔ (𝜑 ∧ 𝜓))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 383 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 197 df-an 385 |
This theorem is referenced by: biantrur 526 biantrurd 528 anclb 569 pm5.42 570 anabs5 868 pm5.33 940 bianabs 942 annotanannot 959 baib 964 baibd 968 pclem6 991 moanim 2558 euan 2559 eueq3 3414 reu6 3428 ifan 4167 dfopif 4430 reusv2lem5 4903 fvopab3g 6316 riota1a 6670 dfom2 7109 suppssr 7371 mpt2curryd 7440 boxcutc 7993 funisfsupp 8321 dfac3 8982 eluz2 11731 elixx3g 12226 elfz2 12371 zmodid2 12738 shftfib 13856 dvdsssfz1 15087 modremain 15179 sadadd2lem2 15219 smumullem 15261 issubg 17641 resgrpisgrp 17662 sscntz 17805 pgrpsubgsymgbi 17873 issubrg 18828 lindsmm 20215 mdetunilem8 20473 mdetunilem9 20474 cmpsub 21251 txcnmpt 21475 fbfinnfr 21692 elfilss 21727 fixufil 21773 ibladdlem 23631 iblabslem 23639 cusgruvtxb 26374 usgr0edg0rusgr 26527 rgrusgrprc 26541 rusgrnumwwlkslem 26936 eclclwwlkn1 27039 eupth2lem1 27196 pjimai 29163 chrelati 29351 tltnle 29790 metidv 30063 slenlt 32002 curf 33517 unccur 33522 cnambfre 33588 itg2addnclem2 33592 ibladdnclem 33596 iblabsnclem 33603 expdiophlem1 37905 rfovcnvf1od 38615 fsovrfovd 38620 ntrneiel2 38701 reuan 41501 odd2np1ALTV 41910 isrnghm 42217 rnghmval2 42220 uzlidlring 42254 islindeps 42567 elbigo2 42671 |
Copyright terms: Public domain | W3C validator |