![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > i1frn | Structured version Visualization version GIF version |
Description: A simple function has finite range. (Contributed by Mario Carneiro, 26-Jun-2014.) |
Ref | Expression |
---|---|
i1frn | ⊢ (𝐹 ∈ dom ∫1 → ran 𝐹 ∈ Fin) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isi1f 23660 | . . 3 ⊢ (𝐹 ∈ dom ∫1 ↔ (𝐹 ∈ MblFn ∧ (𝐹:ℝ⟶ℝ ∧ ran 𝐹 ∈ Fin ∧ (vol‘(◡𝐹 “ (ℝ ∖ {0}))) ∈ ℝ))) | |
2 | 1 | simprbi 483 | . 2 ⊢ (𝐹 ∈ dom ∫1 → (𝐹:ℝ⟶ℝ ∧ ran 𝐹 ∈ Fin ∧ (vol‘(◡𝐹 “ (ℝ ∖ {0}))) ∈ ℝ)) |
3 | 2 | simp2d 1138 | 1 ⊢ (𝐹 ∈ dom ∫1 → ran 𝐹 ∈ Fin) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1072 ∈ wcel 2139 ∖ cdif 3712 {csn 4321 ◡ccnv 5265 dom cdm 5266 ran crn 5267 “ cima 5269 ⟶wf 6045 ‘cfv 6049 Fincfn 8123 ℝcr 10147 0cc0 10148 volcvol 23452 MblFncmbf 23602 ∫1citg1 23603 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-sep 4933 ax-nul 4941 ax-pr 5055 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ral 3055 df-rex 3056 df-rab 3059 df-v 3342 df-sbc 3577 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-nul 4059 df-if 4231 df-sn 4322 df-pr 4324 df-op 4328 df-uni 4589 df-br 4805 df-opab 4865 df-mpt 4882 df-id 5174 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-fv 6057 df-sum 14636 df-itg1 23608 |
This theorem is referenced by: i1fima 23664 itg1cl 23671 itg1ge0 23672 i1fadd 23681 i1fmul 23682 itg1addlem4 23685 itg1addlem5 23686 i1fmulc 23689 itg1mulc 23690 i1fres 23691 itg10a 23696 itg1ge0a 23697 itg1climres 23700 itg2addnclem2 33793 ftc1anclem3 33818 ftc1anclem6 33821 ftc1anclem7 33822 ftc1anc 33824 |
Copyright terms: Public domain | W3C validator |