MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  i1frn Structured version   Visualization version   GIF version

Theorem i1frn 23663
Description: A simple function has finite range. (Contributed by Mario Carneiro, 26-Jun-2014.)
Assertion
Ref Expression
i1frn (𝐹 ∈ dom ∫1 → ran 𝐹 ∈ Fin)

Proof of Theorem i1frn
StepHypRef Expression
1 isi1f 23660 . . 3 (𝐹 ∈ dom ∫1 ↔ (𝐹 ∈ MblFn ∧ (𝐹:ℝ⟶ℝ ∧ ran 𝐹 ∈ Fin ∧ (vol‘(𝐹 “ (ℝ ∖ {0}))) ∈ ℝ)))
21simprbi 483 . 2 (𝐹 ∈ dom ∫1 → (𝐹:ℝ⟶ℝ ∧ ran 𝐹 ∈ Fin ∧ (vol‘(𝐹 “ (ℝ ∖ {0}))) ∈ ℝ))
32simp2d 1138 1 (𝐹 ∈ dom ∫1 → ran 𝐹 ∈ Fin)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1072  wcel 2139  cdif 3712  {csn 4321  ccnv 5265  dom cdm 5266  ran crn 5267  cima 5269  wf 6045  cfv 6049  Fincfn 8123  cr 10147  0cc0 10148  volcvol 23452  MblFncmbf 23602  1citg1 23603
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-sep 4933  ax-nul 4941  ax-pr 5055
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ral 3055  df-rex 3056  df-rab 3059  df-v 3342  df-sbc 3577  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-nul 4059  df-if 4231  df-sn 4322  df-pr 4324  df-op 4328  df-uni 4589  df-br 4805  df-opab 4865  df-mpt 4882  df-id 5174  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-fv 6057  df-sum 14636  df-itg1 23608
This theorem is referenced by:  i1fima  23664  itg1cl  23671  itg1ge0  23672  i1fadd  23681  i1fmul  23682  itg1addlem4  23685  itg1addlem5  23686  i1fmulc  23689  itg1mulc  23690  i1fres  23691  itg10a  23696  itg1ge0a  23697  itg1climres  23700  itg2addnclem2  33793  ftc1anclem3  33818  ftc1anclem6  33821  ftc1anclem7  33822  ftc1anc  33824
  Copyright terms: Public domain W3C validator