![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > i1fposd | Structured version Visualization version GIF version |
Description: Deduction form of i1fposd 23693. (Contributed by Mario Carneiro, 6-Aug-2014.) |
Ref | Expression |
---|---|
i1fposd.1 | ⊢ (𝜑 → (𝑥 ∈ ℝ ↦ 𝐴) ∈ dom ∫1) |
Ref | Expression |
---|---|
i1fposd | ⊢ (𝜑 → (𝑥 ∈ ℝ ↦ if(0 ≤ 𝐴, 𝐴, 0)) ∈ dom ∫1) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcv 2912 | . . . . . 6 ⊢ Ⅎ𝑥0 | |
2 | nfcv 2912 | . . . . . 6 ⊢ Ⅎ𝑥 ≤ | |
3 | nffvmpt1 6340 | . . . . . 6 ⊢ Ⅎ𝑥((𝑥 ∈ ℝ ↦ 𝐴)‘𝑦) | |
4 | 1, 2, 3 | nfbr 4831 | . . . . 5 ⊢ Ⅎ𝑥0 ≤ ((𝑥 ∈ ℝ ↦ 𝐴)‘𝑦) |
5 | 4, 3, 1 | nfif 4252 | . . . 4 ⊢ Ⅎ𝑥if(0 ≤ ((𝑥 ∈ ℝ ↦ 𝐴)‘𝑦), ((𝑥 ∈ ℝ ↦ 𝐴)‘𝑦), 0) |
6 | nfcv 2912 | . . . 4 ⊢ Ⅎ𝑦if(0 ≤ ((𝑥 ∈ ℝ ↦ 𝐴)‘𝑥), ((𝑥 ∈ ℝ ↦ 𝐴)‘𝑥), 0) | |
7 | fveq2 6332 | . . . . . 6 ⊢ (𝑦 = 𝑥 → ((𝑥 ∈ ℝ ↦ 𝐴)‘𝑦) = ((𝑥 ∈ ℝ ↦ 𝐴)‘𝑥)) | |
8 | 7 | breq2d 4796 | . . . . 5 ⊢ (𝑦 = 𝑥 → (0 ≤ ((𝑥 ∈ ℝ ↦ 𝐴)‘𝑦) ↔ 0 ≤ ((𝑥 ∈ ℝ ↦ 𝐴)‘𝑥))) |
9 | 8, 7 | ifbieq1d 4246 | . . . 4 ⊢ (𝑦 = 𝑥 → if(0 ≤ ((𝑥 ∈ ℝ ↦ 𝐴)‘𝑦), ((𝑥 ∈ ℝ ↦ 𝐴)‘𝑦), 0) = if(0 ≤ ((𝑥 ∈ ℝ ↦ 𝐴)‘𝑥), ((𝑥 ∈ ℝ ↦ 𝐴)‘𝑥), 0)) |
10 | 5, 6, 9 | cbvmpt 4881 | . . 3 ⊢ (𝑦 ∈ ℝ ↦ if(0 ≤ ((𝑥 ∈ ℝ ↦ 𝐴)‘𝑦), ((𝑥 ∈ ℝ ↦ 𝐴)‘𝑦), 0)) = (𝑥 ∈ ℝ ↦ if(0 ≤ ((𝑥 ∈ ℝ ↦ 𝐴)‘𝑥), ((𝑥 ∈ ℝ ↦ 𝐴)‘𝑥), 0)) |
11 | simpr 471 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → 𝑥 ∈ ℝ) | |
12 | i1fposd.1 | . . . . . . . . . 10 ⊢ (𝜑 → (𝑥 ∈ ℝ ↦ 𝐴) ∈ dom ∫1) | |
13 | i1ff 23662 | . . . . . . . . . 10 ⊢ ((𝑥 ∈ ℝ ↦ 𝐴) ∈ dom ∫1 → (𝑥 ∈ ℝ ↦ 𝐴):ℝ⟶ℝ) | |
14 | 12, 13 | syl 17 | . . . . . . . . 9 ⊢ (𝜑 → (𝑥 ∈ ℝ ↦ 𝐴):ℝ⟶ℝ) |
15 | eqid 2770 | . . . . . . . . . 10 ⊢ (𝑥 ∈ ℝ ↦ 𝐴) = (𝑥 ∈ ℝ ↦ 𝐴) | |
16 | 15 | fmpt 6523 | . . . . . . . . 9 ⊢ (∀𝑥 ∈ ℝ 𝐴 ∈ ℝ ↔ (𝑥 ∈ ℝ ↦ 𝐴):ℝ⟶ℝ) |
17 | 14, 16 | sylibr 224 | . . . . . . . 8 ⊢ (𝜑 → ∀𝑥 ∈ ℝ 𝐴 ∈ ℝ) |
18 | 17 | r19.21bi 3080 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → 𝐴 ∈ ℝ) |
19 | 15 | fvmpt2 6433 | . . . . . . 7 ⊢ ((𝑥 ∈ ℝ ∧ 𝐴 ∈ ℝ) → ((𝑥 ∈ ℝ ↦ 𝐴)‘𝑥) = 𝐴) |
20 | 11, 18, 19 | syl2anc 565 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → ((𝑥 ∈ ℝ ↦ 𝐴)‘𝑥) = 𝐴) |
21 | 20 | breq2d 4796 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (0 ≤ ((𝑥 ∈ ℝ ↦ 𝐴)‘𝑥) ↔ 0 ≤ 𝐴)) |
22 | 21, 20 | ifbieq1d 4246 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → if(0 ≤ ((𝑥 ∈ ℝ ↦ 𝐴)‘𝑥), ((𝑥 ∈ ℝ ↦ 𝐴)‘𝑥), 0) = if(0 ≤ 𝐴, 𝐴, 0)) |
23 | 22 | mpteq2dva 4876 | . . 3 ⊢ (𝜑 → (𝑥 ∈ ℝ ↦ if(0 ≤ ((𝑥 ∈ ℝ ↦ 𝐴)‘𝑥), ((𝑥 ∈ ℝ ↦ 𝐴)‘𝑥), 0)) = (𝑥 ∈ ℝ ↦ if(0 ≤ 𝐴, 𝐴, 0))) |
24 | 10, 23 | syl5eq 2816 | . 2 ⊢ (𝜑 → (𝑦 ∈ ℝ ↦ if(0 ≤ ((𝑥 ∈ ℝ ↦ 𝐴)‘𝑦), ((𝑥 ∈ ℝ ↦ 𝐴)‘𝑦), 0)) = (𝑥 ∈ ℝ ↦ if(0 ≤ 𝐴, 𝐴, 0))) |
25 | eqid 2770 | . . . 4 ⊢ (𝑦 ∈ ℝ ↦ if(0 ≤ ((𝑥 ∈ ℝ ↦ 𝐴)‘𝑦), ((𝑥 ∈ ℝ ↦ 𝐴)‘𝑦), 0)) = (𝑦 ∈ ℝ ↦ if(0 ≤ ((𝑥 ∈ ℝ ↦ 𝐴)‘𝑦), ((𝑥 ∈ ℝ ↦ 𝐴)‘𝑦), 0)) | |
26 | 25 | i1fpos 23692 | . . 3 ⊢ ((𝑥 ∈ ℝ ↦ 𝐴) ∈ dom ∫1 → (𝑦 ∈ ℝ ↦ if(0 ≤ ((𝑥 ∈ ℝ ↦ 𝐴)‘𝑦), ((𝑥 ∈ ℝ ↦ 𝐴)‘𝑦), 0)) ∈ dom ∫1) |
27 | 12, 26 | syl 17 | . 2 ⊢ (𝜑 → (𝑦 ∈ ℝ ↦ if(0 ≤ ((𝑥 ∈ ℝ ↦ 𝐴)‘𝑦), ((𝑥 ∈ ℝ ↦ 𝐴)‘𝑦), 0)) ∈ dom ∫1) |
28 | 24, 27 | eqeltrrd 2850 | 1 ⊢ (𝜑 → (𝑥 ∈ ℝ ↦ if(0 ≤ 𝐴, 𝐴, 0)) ∈ dom ∫1) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 382 = wceq 1630 ∈ wcel 2144 ∀wral 3060 ifcif 4223 class class class wbr 4784 ↦ cmpt 4861 dom cdm 5249 ⟶wf 6027 ‘cfv 6031 ℝcr 10136 0cc0 10137 ≤ cle 10276 ∫1citg1 23602 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1869 ax-4 1884 ax-5 1990 ax-6 2056 ax-7 2092 ax-8 2146 ax-9 2153 ax-10 2173 ax-11 2189 ax-12 2202 ax-13 2407 ax-ext 2750 ax-rep 4902 ax-sep 4912 ax-nul 4920 ax-pow 4971 ax-pr 5034 ax-un 7095 ax-inf2 8701 ax-cnex 10193 ax-resscn 10194 ax-1cn 10195 ax-icn 10196 ax-addcl 10197 ax-addrcl 10198 ax-mulcl 10199 ax-mulrcl 10200 ax-mulcom 10201 ax-addass 10202 ax-mulass 10203 ax-distr 10204 ax-i2m1 10205 ax-1ne0 10206 ax-1rid 10207 ax-rnegex 10208 ax-rrecex 10209 ax-cnre 10210 ax-pre-lttri 10211 ax-pre-lttrn 10212 ax-pre-ltadd 10213 ax-pre-mulgt0 10214 ax-pre-sup 10215 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 827 df-3or 1071 df-3an 1072 df-tru 1633 df-fal 1636 df-ex 1852 df-nf 1857 df-sb 2049 df-eu 2621 df-mo 2622 df-clab 2757 df-cleq 2763 df-clel 2766 df-nfc 2901 df-ne 2943 df-nel 3046 df-ral 3065 df-rex 3066 df-reu 3067 df-rmo 3068 df-rab 3069 df-v 3351 df-sbc 3586 df-csb 3681 df-dif 3724 df-un 3726 df-in 3728 df-ss 3735 df-pss 3737 df-nul 4062 df-if 4224 df-pw 4297 df-sn 4315 df-pr 4317 df-tp 4319 df-op 4321 df-uni 4573 df-int 4610 df-iun 4654 df-br 4785 df-opab 4845 df-mpt 4862 df-tr 4885 df-id 5157 df-eprel 5162 df-po 5170 df-so 5171 df-fr 5208 df-se 5209 df-we 5210 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-pred 5823 df-ord 5869 df-on 5870 df-lim 5871 df-suc 5872 df-iota 5994 df-fun 6033 df-fn 6034 df-f 6035 df-f1 6036 df-fo 6037 df-f1o 6038 df-fv 6039 df-isom 6040 df-riota 6753 df-ov 6795 df-oprab 6796 df-mpt2 6797 df-of 7043 df-om 7212 df-1st 7314 df-2nd 7315 df-wrecs 7558 df-recs 7620 df-rdg 7658 df-1o 7712 df-2o 7713 df-oadd 7716 df-er 7895 df-map 8010 df-pm 8011 df-en 8109 df-dom 8110 df-sdom 8111 df-fin 8112 df-fi 8472 df-sup 8503 df-inf 8504 df-oi 8570 df-card 8964 df-cda 9191 df-pnf 10277 df-mnf 10278 df-xr 10279 df-ltxr 10280 df-le 10281 df-sub 10469 df-neg 10470 df-div 10886 df-nn 11222 df-2 11280 df-3 11281 df-n0 11494 df-z 11579 df-uz 11888 df-q 11991 df-rp 12035 df-xneg 12150 df-xadd 12151 df-xmul 12152 df-ioo 12383 df-ico 12385 df-icc 12386 df-fz 12533 df-fzo 12673 df-fl 12800 df-seq 13008 df-exp 13067 df-hash 13321 df-cj 14046 df-re 14047 df-im 14048 df-sqrt 14182 df-abs 14183 df-clim 14426 df-sum 14624 df-rest 16290 df-topgen 16311 df-psmet 19952 df-xmet 19953 df-met 19954 df-bl 19955 df-mopn 19956 df-top 20918 df-topon 20935 df-bases 20970 df-cmp 21410 df-ovol 23451 df-vol 23452 df-mbf 23606 df-itg1 23607 |
This theorem is referenced by: i1fibl 23793 itgitg1 23794 |
Copyright terms: Public domain | W3C validator |