MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  i1fmullem Structured version   Visualization version   GIF version

Theorem i1fmullem 23506
Description: Decompose the preimage of a product. (Contributed by Mario Carneiro, 19-Jun-2014.)
Hypotheses
Ref Expression
i1fadd.1 (𝜑𝐹 ∈ dom ∫1)
i1fadd.2 (𝜑𝐺 ∈ dom ∫1)
Assertion
Ref Expression
i1fmullem ((𝜑𝐴 ∈ (ℂ ∖ {0})) → ((𝐹𝑓 · 𝐺) “ {𝐴}) = 𝑦 ∈ (ran 𝐺 ∖ {0})((𝐹 “ {(𝐴 / 𝑦)}) ∩ (𝐺 “ {𝑦})))
Distinct variable groups:   𝑦,𝐴   𝑦,𝐹   𝑦,𝐺   𝜑,𝑦

Proof of Theorem i1fmullem
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 i1fadd.1 . . . . . . . . 9 (𝜑𝐹 ∈ dom ∫1)
2 i1ff 23488 . . . . . . . . 9 (𝐹 ∈ dom ∫1𝐹:ℝ⟶ℝ)
31, 2syl 17 . . . . . . . 8 (𝜑𝐹:ℝ⟶ℝ)
4 ffn 6083 . . . . . . . 8 (𝐹:ℝ⟶ℝ → 𝐹 Fn ℝ)
53, 4syl 17 . . . . . . 7 (𝜑𝐹 Fn ℝ)
6 i1fadd.2 . . . . . . . . 9 (𝜑𝐺 ∈ dom ∫1)
7 i1ff 23488 . . . . . . . . 9 (𝐺 ∈ dom ∫1𝐺:ℝ⟶ℝ)
86, 7syl 17 . . . . . . . 8 (𝜑𝐺:ℝ⟶ℝ)
9 ffn 6083 . . . . . . . 8 (𝐺:ℝ⟶ℝ → 𝐺 Fn ℝ)
108, 9syl 17 . . . . . . 7 (𝜑𝐺 Fn ℝ)
11 reex 10065 . . . . . . . 8 ℝ ∈ V
1211a1i 11 . . . . . . 7 (𝜑 → ℝ ∈ V)
13 inidm 3855 . . . . . . 7 (ℝ ∩ ℝ) = ℝ
145, 10, 12, 12, 13offn 6950 . . . . . 6 (𝜑 → (𝐹𝑓 · 𝐺) Fn ℝ)
1514adantr 480 . . . . 5 ((𝜑𝐴 ∈ (ℂ ∖ {0})) → (𝐹𝑓 · 𝐺) Fn ℝ)
16 fniniseg 6378 . . . . 5 ((𝐹𝑓 · 𝐺) Fn ℝ → (𝑧 ∈ ((𝐹𝑓 · 𝐺) “ {𝐴}) ↔ (𝑧 ∈ ℝ ∧ ((𝐹𝑓 · 𝐺)‘𝑧) = 𝐴)))
1715, 16syl 17 . . . 4 ((𝜑𝐴 ∈ (ℂ ∖ {0})) → (𝑧 ∈ ((𝐹𝑓 · 𝐺) “ {𝐴}) ↔ (𝑧 ∈ ℝ ∧ ((𝐹𝑓 · 𝐺)‘𝑧) = 𝐴)))
185adantr 480 . . . . . . 7 ((𝜑𝐴 ∈ (ℂ ∖ {0})) → 𝐹 Fn ℝ)
1910adantr 480 . . . . . . 7 ((𝜑𝐴 ∈ (ℂ ∖ {0})) → 𝐺 Fn ℝ)
2011a1i 11 . . . . . . 7 ((𝜑𝐴 ∈ (ℂ ∖ {0})) → ℝ ∈ V)
21 eqidd 2652 . . . . . . 7 (((𝜑𝐴 ∈ (ℂ ∖ {0})) ∧ 𝑧 ∈ ℝ) → (𝐹𝑧) = (𝐹𝑧))
22 eqidd 2652 . . . . . . 7 (((𝜑𝐴 ∈ (ℂ ∖ {0})) ∧ 𝑧 ∈ ℝ) → (𝐺𝑧) = (𝐺𝑧))
2318, 19, 20, 20, 13, 21, 22ofval 6948 . . . . . 6 (((𝜑𝐴 ∈ (ℂ ∖ {0})) ∧ 𝑧 ∈ ℝ) → ((𝐹𝑓 · 𝐺)‘𝑧) = ((𝐹𝑧) · (𝐺𝑧)))
2423eqeq1d 2653 . . . . 5 (((𝜑𝐴 ∈ (ℂ ∖ {0})) ∧ 𝑧 ∈ ℝ) → (((𝐹𝑓 · 𝐺)‘𝑧) = 𝐴 ↔ ((𝐹𝑧) · (𝐺𝑧)) = 𝐴))
2524pm5.32da 674 . . . 4 ((𝜑𝐴 ∈ (ℂ ∖ {0})) → ((𝑧 ∈ ℝ ∧ ((𝐹𝑓 · 𝐺)‘𝑧) = 𝐴) ↔ (𝑧 ∈ ℝ ∧ ((𝐹𝑧) · (𝐺𝑧)) = 𝐴)))
2610ad2antrr 762 . . . . . . . . 9 (((𝜑𝐴 ∈ (ℂ ∖ {0})) ∧ (𝑧 ∈ ℝ ∧ ((𝐹𝑧) · (𝐺𝑧)) = 𝐴)) → 𝐺 Fn ℝ)
27 simprl 809 . . . . . . . . 9 (((𝜑𝐴 ∈ (ℂ ∖ {0})) ∧ (𝑧 ∈ ℝ ∧ ((𝐹𝑧) · (𝐺𝑧)) = 𝐴)) → 𝑧 ∈ ℝ)
28 fnfvelrn 6396 . . . . . . . . 9 ((𝐺 Fn ℝ ∧ 𝑧 ∈ ℝ) → (𝐺𝑧) ∈ ran 𝐺)
2926, 27, 28syl2anc 694 . . . . . . . 8 (((𝜑𝐴 ∈ (ℂ ∖ {0})) ∧ (𝑧 ∈ ℝ ∧ ((𝐹𝑧) · (𝐺𝑧)) = 𝐴)) → (𝐺𝑧) ∈ ran 𝐺)
30 eldifsni 4353 . . . . . . . . . . 11 (𝐴 ∈ (ℂ ∖ {0}) → 𝐴 ≠ 0)
3130ad2antlr 763 . . . . . . . . . 10 (((𝜑𝐴 ∈ (ℂ ∖ {0})) ∧ (𝑧 ∈ ℝ ∧ ((𝐹𝑧) · (𝐺𝑧)) = 𝐴)) → 𝐴 ≠ 0)
32 simprr 811 . . . . . . . . . 10 (((𝜑𝐴 ∈ (ℂ ∖ {0})) ∧ (𝑧 ∈ ℝ ∧ ((𝐹𝑧) · (𝐺𝑧)) = 𝐴)) → ((𝐹𝑧) · (𝐺𝑧)) = 𝐴)
333ad2antrr 762 . . . . . . . . . . . . 13 (((𝜑𝐴 ∈ (ℂ ∖ {0})) ∧ (𝑧 ∈ ℝ ∧ ((𝐹𝑧) · (𝐺𝑧)) = 𝐴)) → 𝐹:ℝ⟶ℝ)
3433, 27ffvelrnd 6400 . . . . . . . . . . . 12 (((𝜑𝐴 ∈ (ℂ ∖ {0})) ∧ (𝑧 ∈ ℝ ∧ ((𝐹𝑧) · (𝐺𝑧)) = 𝐴)) → (𝐹𝑧) ∈ ℝ)
3534recnd 10106 . . . . . . . . . . 11 (((𝜑𝐴 ∈ (ℂ ∖ {0})) ∧ (𝑧 ∈ ℝ ∧ ((𝐹𝑧) · (𝐺𝑧)) = 𝐴)) → (𝐹𝑧) ∈ ℂ)
3635mul01d 10273 . . . . . . . . . 10 (((𝜑𝐴 ∈ (ℂ ∖ {0})) ∧ (𝑧 ∈ ℝ ∧ ((𝐹𝑧) · (𝐺𝑧)) = 𝐴)) → ((𝐹𝑧) · 0) = 0)
3731, 32, 363netr4d 2900 . . . . . . . . 9 (((𝜑𝐴 ∈ (ℂ ∖ {0})) ∧ (𝑧 ∈ ℝ ∧ ((𝐹𝑧) · (𝐺𝑧)) = 𝐴)) → ((𝐹𝑧) · (𝐺𝑧)) ≠ ((𝐹𝑧) · 0))
38 oveq2 6698 . . . . . . . . . 10 ((𝐺𝑧) = 0 → ((𝐹𝑧) · (𝐺𝑧)) = ((𝐹𝑧) · 0))
3938necon3i 2855 . . . . . . . . 9 (((𝐹𝑧) · (𝐺𝑧)) ≠ ((𝐹𝑧) · 0) → (𝐺𝑧) ≠ 0)
4037, 39syl 17 . . . . . . . 8 (((𝜑𝐴 ∈ (ℂ ∖ {0})) ∧ (𝑧 ∈ ℝ ∧ ((𝐹𝑧) · (𝐺𝑧)) = 𝐴)) → (𝐺𝑧) ≠ 0)
41 eldifsn 4350 . . . . . . . 8 ((𝐺𝑧) ∈ (ran 𝐺 ∖ {0}) ↔ ((𝐺𝑧) ∈ ran 𝐺 ∧ (𝐺𝑧) ≠ 0))
4229, 40, 41sylanbrc 699 . . . . . . 7 (((𝜑𝐴 ∈ (ℂ ∖ {0})) ∧ (𝑧 ∈ ℝ ∧ ((𝐹𝑧) · (𝐺𝑧)) = 𝐴)) → (𝐺𝑧) ∈ (ran 𝐺 ∖ {0}))
438ad2antrr 762 . . . . . . . . . . . . 13 (((𝜑𝐴 ∈ (ℂ ∖ {0})) ∧ (𝑧 ∈ ℝ ∧ ((𝐹𝑧) · (𝐺𝑧)) = 𝐴)) → 𝐺:ℝ⟶ℝ)
4443, 27ffvelrnd 6400 . . . . . . . . . . . 12 (((𝜑𝐴 ∈ (ℂ ∖ {0})) ∧ (𝑧 ∈ ℝ ∧ ((𝐹𝑧) · (𝐺𝑧)) = 𝐴)) → (𝐺𝑧) ∈ ℝ)
4544recnd 10106 . . . . . . . . . . 11 (((𝜑𝐴 ∈ (ℂ ∖ {0})) ∧ (𝑧 ∈ ℝ ∧ ((𝐹𝑧) · (𝐺𝑧)) = 𝐴)) → (𝐺𝑧) ∈ ℂ)
4635, 45, 40divcan4d 10845 . . . . . . . . . 10 (((𝜑𝐴 ∈ (ℂ ∖ {0})) ∧ (𝑧 ∈ ℝ ∧ ((𝐹𝑧) · (𝐺𝑧)) = 𝐴)) → (((𝐹𝑧) · (𝐺𝑧)) / (𝐺𝑧)) = (𝐹𝑧))
4732oveq1d 6705 . . . . . . . . . 10 (((𝜑𝐴 ∈ (ℂ ∖ {0})) ∧ (𝑧 ∈ ℝ ∧ ((𝐹𝑧) · (𝐺𝑧)) = 𝐴)) → (((𝐹𝑧) · (𝐺𝑧)) / (𝐺𝑧)) = (𝐴 / (𝐺𝑧)))
4846, 47eqtr3d 2687 . . . . . . . . 9 (((𝜑𝐴 ∈ (ℂ ∖ {0})) ∧ (𝑧 ∈ ℝ ∧ ((𝐹𝑧) · (𝐺𝑧)) = 𝐴)) → (𝐹𝑧) = (𝐴 / (𝐺𝑧)))
4933, 4syl 17 . . . . . . . . . 10 (((𝜑𝐴 ∈ (ℂ ∖ {0})) ∧ (𝑧 ∈ ℝ ∧ ((𝐹𝑧) · (𝐺𝑧)) = 𝐴)) → 𝐹 Fn ℝ)
50 fniniseg 6378 . . . . . . . . . 10 (𝐹 Fn ℝ → (𝑧 ∈ (𝐹 “ {(𝐴 / (𝐺𝑧))}) ↔ (𝑧 ∈ ℝ ∧ (𝐹𝑧) = (𝐴 / (𝐺𝑧)))))
5149, 50syl 17 . . . . . . . . 9 (((𝜑𝐴 ∈ (ℂ ∖ {0})) ∧ (𝑧 ∈ ℝ ∧ ((𝐹𝑧) · (𝐺𝑧)) = 𝐴)) → (𝑧 ∈ (𝐹 “ {(𝐴 / (𝐺𝑧))}) ↔ (𝑧 ∈ ℝ ∧ (𝐹𝑧) = (𝐴 / (𝐺𝑧)))))
5227, 48, 51mpbir2and 977 . . . . . . . 8 (((𝜑𝐴 ∈ (ℂ ∖ {0})) ∧ (𝑧 ∈ ℝ ∧ ((𝐹𝑧) · (𝐺𝑧)) = 𝐴)) → 𝑧 ∈ (𝐹 “ {(𝐴 / (𝐺𝑧))}))
53 eqidd 2652 . . . . . . . . 9 (((𝜑𝐴 ∈ (ℂ ∖ {0})) ∧ (𝑧 ∈ ℝ ∧ ((𝐹𝑧) · (𝐺𝑧)) = 𝐴)) → (𝐺𝑧) = (𝐺𝑧))
54 fniniseg 6378 . . . . . . . . . 10 (𝐺 Fn ℝ → (𝑧 ∈ (𝐺 “ {(𝐺𝑧)}) ↔ (𝑧 ∈ ℝ ∧ (𝐺𝑧) = (𝐺𝑧))))
5526, 54syl 17 . . . . . . . . 9 (((𝜑𝐴 ∈ (ℂ ∖ {0})) ∧ (𝑧 ∈ ℝ ∧ ((𝐹𝑧) · (𝐺𝑧)) = 𝐴)) → (𝑧 ∈ (𝐺 “ {(𝐺𝑧)}) ↔ (𝑧 ∈ ℝ ∧ (𝐺𝑧) = (𝐺𝑧))))
5627, 53, 55mpbir2and 977 . . . . . . . 8 (((𝜑𝐴 ∈ (ℂ ∖ {0})) ∧ (𝑧 ∈ ℝ ∧ ((𝐹𝑧) · (𝐺𝑧)) = 𝐴)) → 𝑧 ∈ (𝐺 “ {(𝐺𝑧)}))
57 elin 3829 . . . . . . . 8 (𝑧 ∈ ((𝐹 “ {(𝐴 / (𝐺𝑧))}) ∩ (𝐺 “ {(𝐺𝑧)})) ↔ (𝑧 ∈ (𝐹 “ {(𝐴 / (𝐺𝑧))}) ∧ 𝑧 ∈ (𝐺 “ {(𝐺𝑧)})))
5852, 56, 57sylanbrc 699 . . . . . . 7 (((𝜑𝐴 ∈ (ℂ ∖ {0})) ∧ (𝑧 ∈ ℝ ∧ ((𝐹𝑧) · (𝐺𝑧)) = 𝐴)) → 𝑧 ∈ ((𝐹 “ {(𝐴 / (𝐺𝑧))}) ∩ (𝐺 “ {(𝐺𝑧)})))
59 oveq2 6698 . . . . . . . . . . . 12 (𝑦 = (𝐺𝑧) → (𝐴 / 𝑦) = (𝐴 / (𝐺𝑧)))
6059sneqd 4222 . . . . . . . . . . 11 (𝑦 = (𝐺𝑧) → {(𝐴 / 𝑦)} = {(𝐴 / (𝐺𝑧))})
6160imaeq2d 5501 . . . . . . . . . 10 (𝑦 = (𝐺𝑧) → (𝐹 “ {(𝐴 / 𝑦)}) = (𝐹 “ {(𝐴 / (𝐺𝑧))}))
62 sneq 4220 . . . . . . . . . . 11 (𝑦 = (𝐺𝑧) → {𝑦} = {(𝐺𝑧)})
6362imaeq2d 5501 . . . . . . . . . 10 (𝑦 = (𝐺𝑧) → (𝐺 “ {𝑦}) = (𝐺 “ {(𝐺𝑧)}))
6461, 63ineq12d 3848 . . . . . . . . 9 (𝑦 = (𝐺𝑧) → ((𝐹 “ {(𝐴 / 𝑦)}) ∩ (𝐺 “ {𝑦})) = ((𝐹 “ {(𝐴 / (𝐺𝑧))}) ∩ (𝐺 “ {(𝐺𝑧)})))
6564eleq2d 2716 . . . . . . . 8 (𝑦 = (𝐺𝑧) → (𝑧 ∈ ((𝐹 “ {(𝐴 / 𝑦)}) ∩ (𝐺 “ {𝑦})) ↔ 𝑧 ∈ ((𝐹 “ {(𝐴 / (𝐺𝑧))}) ∩ (𝐺 “ {(𝐺𝑧)}))))
6665rspcev 3340 . . . . . . 7 (((𝐺𝑧) ∈ (ran 𝐺 ∖ {0}) ∧ 𝑧 ∈ ((𝐹 “ {(𝐴 / (𝐺𝑧))}) ∩ (𝐺 “ {(𝐺𝑧)}))) → ∃𝑦 ∈ (ran 𝐺 ∖ {0})𝑧 ∈ ((𝐹 “ {(𝐴 / 𝑦)}) ∩ (𝐺 “ {𝑦})))
6742, 58, 66syl2anc 694 . . . . . 6 (((𝜑𝐴 ∈ (ℂ ∖ {0})) ∧ (𝑧 ∈ ℝ ∧ ((𝐹𝑧) · (𝐺𝑧)) = 𝐴)) → ∃𝑦 ∈ (ran 𝐺 ∖ {0})𝑧 ∈ ((𝐹 “ {(𝐴 / 𝑦)}) ∩ (𝐺 “ {𝑦})))
6867ex 449 . . . . 5 ((𝜑𝐴 ∈ (ℂ ∖ {0})) → ((𝑧 ∈ ℝ ∧ ((𝐹𝑧) · (𝐺𝑧)) = 𝐴) → ∃𝑦 ∈ (ran 𝐺 ∖ {0})𝑧 ∈ ((𝐹 “ {(𝐴 / 𝑦)}) ∩ (𝐺 “ {𝑦}))))
69 fniniseg 6378 . . . . . . . . . . 11 (𝐹 Fn ℝ → (𝑧 ∈ (𝐹 “ {(𝐴 / 𝑦)}) ↔ (𝑧 ∈ ℝ ∧ (𝐹𝑧) = (𝐴 / 𝑦))))
7018, 69syl 17 . . . . . . . . . 10 ((𝜑𝐴 ∈ (ℂ ∖ {0})) → (𝑧 ∈ (𝐹 “ {(𝐴 / 𝑦)}) ↔ (𝑧 ∈ ℝ ∧ (𝐹𝑧) = (𝐴 / 𝑦))))
71 fniniseg 6378 . . . . . . . . . . 11 (𝐺 Fn ℝ → (𝑧 ∈ (𝐺 “ {𝑦}) ↔ (𝑧 ∈ ℝ ∧ (𝐺𝑧) = 𝑦)))
7219, 71syl 17 . . . . . . . . . 10 ((𝜑𝐴 ∈ (ℂ ∖ {0})) → (𝑧 ∈ (𝐺 “ {𝑦}) ↔ (𝑧 ∈ ℝ ∧ (𝐺𝑧) = 𝑦)))
7370, 72anbi12d 747 . . . . . . . . 9 ((𝜑𝐴 ∈ (ℂ ∖ {0})) → ((𝑧 ∈ (𝐹 “ {(𝐴 / 𝑦)}) ∧ 𝑧 ∈ (𝐺 “ {𝑦})) ↔ ((𝑧 ∈ ℝ ∧ (𝐹𝑧) = (𝐴 / 𝑦)) ∧ (𝑧 ∈ ℝ ∧ (𝐺𝑧) = 𝑦))))
74 elin 3829 . . . . . . . . 9 (𝑧 ∈ ((𝐹 “ {(𝐴 / 𝑦)}) ∩ (𝐺 “ {𝑦})) ↔ (𝑧 ∈ (𝐹 “ {(𝐴 / 𝑦)}) ∧ 𝑧 ∈ (𝐺 “ {𝑦})))
75 anandi 888 . . . . . . . . 9 ((𝑧 ∈ ℝ ∧ ((𝐹𝑧) = (𝐴 / 𝑦) ∧ (𝐺𝑧) = 𝑦)) ↔ ((𝑧 ∈ ℝ ∧ (𝐹𝑧) = (𝐴 / 𝑦)) ∧ (𝑧 ∈ ℝ ∧ (𝐺𝑧) = 𝑦)))
7673, 74, 753bitr4g 303 . . . . . . . 8 ((𝜑𝐴 ∈ (ℂ ∖ {0})) → (𝑧 ∈ ((𝐹 “ {(𝐴 / 𝑦)}) ∩ (𝐺 “ {𝑦})) ↔ (𝑧 ∈ ℝ ∧ ((𝐹𝑧) = (𝐴 / 𝑦) ∧ (𝐺𝑧) = 𝑦))))
7776adantr 480 . . . . . . 7 (((𝜑𝐴 ∈ (ℂ ∖ {0})) ∧ 𝑦 ∈ (ran 𝐺 ∖ {0})) → (𝑧 ∈ ((𝐹 “ {(𝐴 / 𝑦)}) ∩ (𝐺 “ {𝑦})) ↔ (𝑧 ∈ ℝ ∧ ((𝐹𝑧) = (𝐴 / 𝑦) ∧ (𝐺𝑧) = 𝑦))))
78 eldifi 3765 . . . . . . . . . . . 12 (𝐴 ∈ (ℂ ∖ {0}) → 𝐴 ∈ ℂ)
7978ad2antlr 763 . . . . . . . . . . 11 (((𝜑𝐴 ∈ (ℂ ∖ {0})) ∧ (𝑦 ∈ (ran 𝐺 ∖ {0}) ∧ 𝑧 ∈ ℝ)) → 𝐴 ∈ ℂ)
808ad2antrr 762 . . . . . . . . . . . . . 14 (((𝜑𝐴 ∈ (ℂ ∖ {0})) ∧ (𝑦 ∈ (ran 𝐺 ∖ {0}) ∧ 𝑧 ∈ ℝ)) → 𝐺:ℝ⟶ℝ)
81 frn 6091 . . . . . . . . . . . . . 14 (𝐺:ℝ⟶ℝ → ran 𝐺 ⊆ ℝ)
8280, 81syl 17 . . . . . . . . . . . . 13 (((𝜑𝐴 ∈ (ℂ ∖ {0})) ∧ (𝑦 ∈ (ran 𝐺 ∖ {0}) ∧ 𝑧 ∈ ℝ)) → ran 𝐺 ⊆ ℝ)
83 simprl 809 . . . . . . . . . . . . . . 15 (((𝜑𝐴 ∈ (ℂ ∖ {0})) ∧ (𝑦 ∈ (ran 𝐺 ∖ {0}) ∧ 𝑧 ∈ ℝ)) → 𝑦 ∈ (ran 𝐺 ∖ {0}))
84 eldifsn 4350 . . . . . . . . . . . . . . 15 (𝑦 ∈ (ran 𝐺 ∖ {0}) ↔ (𝑦 ∈ ran 𝐺𝑦 ≠ 0))
8583, 84sylib 208 . . . . . . . . . . . . . 14 (((𝜑𝐴 ∈ (ℂ ∖ {0})) ∧ (𝑦 ∈ (ran 𝐺 ∖ {0}) ∧ 𝑧 ∈ ℝ)) → (𝑦 ∈ ran 𝐺𝑦 ≠ 0))
8685simpld 474 . . . . . . . . . . . . 13 (((𝜑𝐴 ∈ (ℂ ∖ {0})) ∧ (𝑦 ∈ (ran 𝐺 ∖ {0}) ∧ 𝑧 ∈ ℝ)) → 𝑦 ∈ ran 𝐺)
8782, 86sseldd 3637 . . . . . . . . . . . 12 (((𝜑𝐴 ∈ (ℂ ∖ {0})) ∧ (𝑦 ∈ (ran 𝐺 ∖ {0}) ∧ 𝑧 ∈ ℝ)) → 𝑦 ∈ ℝ)
8887recnd 10106 . . . . . . . . . . 11 (((𝜑𝐴 ∈ (ℂ ∖ {0})) ∧ (𝑦 ∈ (ran 𝐺 ∖ {0}) ∧ 𝑧 ∈ ℝ)) → 𝑦 ∈ ℂ)
8985simprd 478 . . . . . . . . . . 11 (((𝜑𝐴 ∈ (ℂ ∖ {0})) ∧ (𝑦 ∈ (ran 𝐺 ∖ {0}) ∧ 𝑧 ∈ ℝ)) → 𝑦 ≠ 0)
9079, 88, 89divcan1d 10840 . . . . . . . . . 10 (((𝜑𝐴 ∈ (ℂ ∖ {0})) ∧ (𝑦 ∈ (ran 𝐺 ∖ {0}) ∧ 𝑧 ∈ ℝ)) → ((𝐴 / 𝑦) · 𝑦) = 𝐴)
91 oveq12 6699 . . . . . . . . . . 11 (((𝐹𝑧) = (𝐴 / 𝑦) ∧ (𝐺𝑧) = 𝑦) → ((𝐹𝑧) · (𝐺𝑧)) = ((𝐴 / 𝑦) · 𝑦))
9291eqeq1d 2653 . . . . . . . . . 10 (((𝐹𝑧) = (𝐴 / 𝑦) ∧ (𝐺𝑧) = 𝑦) → (((𝐹𝑧) · (𝐺𝑧)) = 𝐴 ↔ ((𝐴 / 𝑦) · 𝑦) = 𝐴))
9390, 92syl5ibrcom 237 . . . . . . . . 9 (((𝜑𝐴 ∈ (ℂ ∖ {0})) ∧ (𝑦 ∈ (ran 𝐺 ∖ {0}) ∧ 𝑧 ∈ ℝ)) → (((𝐹𝑧) = (𝐴 / 𝑦) ∧ (𝐺𝑧) = 𝑦) → ((𝐹𝑧) · (𝐺𝑧)) = 𝐴))
9493anassrs 681 . . . . . . . 8 ((((𝜑𝐴 ∈ (ℂ ∖ {0})) ∧ 𝑦 ∈ (ran 𝐺 ∖ {0})) ∧ 𝑧 ∈ ℝ) → (((𝐹𝑧) = (𝐴 / 𝑦) ∧ (𝐺𝑧) = 𝑦) → ((𝐹𝑧) · (𝐺𝑧)) = 𝐴))
9594imdistanda 729 . . . . . . 7 (((𝜑𝐴 ∈ (ℂ ∖ {0})) ∧ 𝑦 ∈ (ran 𝐺 ∖ {0})) → ((𝑧 ∈ ℝ ∧ ((𝐹𝑧) = (𝐴 / 𝑦) ∧ (𝐺𝑧) = 𝑦)) → (𝑧 ∈ ℝ ∧ ((𝐹𝑧) · (𝐺𝑧)) = 𝐴)))
9677, 95sylbid 230 . . . . . 6 (((𝜑𝐴 ∈ (ℂ ∖ {0})) ∧ 𝑦 ∈ (ran 𝐺 ∖ {0})) → (𝑧 ∈ ((𝐹 “ {(𝐴 / 𝑦)}) ∩ (𝐺 “ {𝑦})) → (𝑧 ∈ ℝ ∧ ((𝐹𝑧) · (𝐺𝑧)) = 𝐴)))
9796rexlimdva 3060 . . . . 5 ((𝜑𝐴 ∈ (ℂ ∖ {0})) → (∃𝑦 ∈ (ran 𝐺 ∖ {0})𝑧 ∈ ((𝐹 “ {(𝐴 / 𝑦)}) ∩ (𝐺 “ {𝑦})) → (𝑧 ∈ ℝ ∧ ((𝐹𝑧) · (𝐺𝑧)) = 𝐴)))
9868, 97impbid 202 . . . 4 ((𝜑𝐴 ∈ (ℂ ∖ {0})) → ((𝑧 ∈ ℝ ∧ ((𝐹𝑧) · (𝐺𝑧)) = 𝐴) ↔ ∃𝑦 ∈ (ran 𝐺 ∖ {0})𝑧 ∈ ((𝐹 “ {(𝐴 / 𝑦)}) ∩ (𝐺 “ {𝑦}))))
9917, 25, 983bitrd 294 . . 3 ((𝜑𝐴 ∈ (ℂ ∖ {0})) → (𝑧 ∈ ((𝐹𝑓 · 𝐺) “ {𝐴}) ↔ ∃𝑦 ∈ (ran 𝐺 ∖ {0})𝑧 ∈ ((𝐹 “ {(𝐴 / 𝑦)}) ∩ (𝐺 “ {𝑦}))))
100 eliun 4556 . . 3 (𝑧 𝑦 ∈ (ran 𝐺 ∖ {0})((𝐹 “ {(𝐴 / 𝑦)}) ∩ (𝐺 “ {𝑦})) ↔ ∃𝑦 ∈ (ran 𝐺 ∖ {0})𝑧 ∈ ((𝐹 “ {(𝐴 / 𝑦)}) ∩ (𝐺 “ {𝑦})))
10199, 100syl6bbr 278 . 2 ((𝜑𝐴 ∈ (ℂ ∖ {0})) → (𝑧 ∈ ((𝐹𝑓 · 𝐺) “ {𝐴}) ↔ 𝑧 𝑦 ∈ (ran 𝐺 ∖ {0})((𝐹 “ {(𝐴 / 𝑦)}) ∩ (𝐺 “ {𝑦}))))
102101eqrdv 2649 1 ((𝜑𝐴 ∈ (ℂ ∖ {0})) → ((𝐹𝑓 · 𝐺) “ {𝐴}) = 𝑦 ∈ (ran 𝐺 ∖ {0})((𝐹 “ {(𝐴 / 𝑦)}) ∩ (𝐺 “ {𝑦})))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383   = wceq 1523  wcel 2030  wne 2823  wrex 2942  Vcvv 3231  cdif 3604  cin 3606  wss 3607  {csn 4210   ciun 4552  ccnv 5142  dom cdm 5143  ran crn 5144  cima 5146   Fn wfn 5921  wf 5922  cfv 5926  (class class class)co 6690  𝑓 cof 6937  cc 9972  cr 9973  0cc0 9974   · cmul 9979   / cdiv 10722  1citg1 23429
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-op 4217  df-uni 4469  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-id 5053  df-po 5064  df-so 5065  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-of 6939  df-er 7787  df-en 7998  df-dom 7999  df-sdom 8000  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-div 10723  df-sum 14461  df-itg1 23434
This theorem is referenced by:  i1fmul  23508
  Copyright terms: Public domain W3C validator