MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  i1fmulclem Structured version   Visualization version   GIF version

Theorem i1fmulclem 23688
Description: Decompose the preimage of a constant times a function. (Contributed by Mario Carneiro, 25-Jun-2014.)
Hypotheses
Ref Expression
i1fmulc.2 (𝜑𝐹 ∈ dom ∫1)
i1fmulc.3 (𝜑𝐴 ∈ ℝ)
Assertion
Ref Expression
i1fmulclem (((𝜑𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ) → (((ℝ × {𝐴}) ∘𝑓 · 𝐹) “ {𝐵}) = (𝐹 “ {(𝐵 / 𝐴)}))

Proof of Theorem i1fmulclem
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 reex 10228 . . . . . . . . . 10 ℝ ∈ V
21a1i 11 . . . . . . . . 9 (𝜑 → ℝ ∈ V)
3 i1fmulc.3 . . . . . . . . 9 (𝜑𝐴 ∈ ℝ)
4 i1fmulc.2 . . . . . . . . . . 11 (𝜑𝐹 ∈ dom ∫1)
5 i1ff 23662 . . . . . . . . . . 11 (𝐹 ∈ dom ∫1𝐹:ℝ⟶ℝ)
64, 5syl 17 . . . . . . . . . 10 (𝜑𝐹:ℝ⟶ℝ)
7 ffn 6185 . . . . . . . . . 10 (𝐹:ℝ⟶ℝ → 𝐹 Fn ℝ)
86, 7syl 17 . . . . . . . . 9 (𝜑𝐹 Fn ℝ)
9 eqidd 2771 . . . . . . . . 9 ((𝜑𝑧 ∈ ℝ) → (𝐹𝑧) = (𝐹𝑧))
102, 3, 8, 9ofc1 7066 . . . . . . . 8 ((𝜑𝑧 ∈ ℝ) → (((ℝ × {𝐴}) ∘𝑓 · 𝐹)‘𝑧) = (𝐴 · (𝐹𝑧)))
1110adantlr 686 . . . . . . 7 (((𝜑𝐴 ≠ 0) ∧ 𝑧 ∈ ℝ) → (((ℝ × {𝐴}) ∘𝑓 · 𝐹)‘𝑧) = (𝐴 · (𝐹𝑧)))
1211adantlr 686 . . . . . 6 ((((𝜑𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ) ∧ 𝑧 ∈ ℝ) → (((ℝ × {𝐴}) ∘𝑓 · 𝐹)‘𝑧) = (𝐴 · (𝐹𝑧)))
1312eqeq1d 2772 . . . . 5 ((((𝜑𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ) ∧ 𝑧 ∈ ℝ) → ((((ℝ × {𝐴}) ∘𝑓 · 𝐹)‘𝑧) = 𝐵 ↔ (𝐴 · (𝐹𝑧)) = 𝐵))
14 eqcom 2777 . . . . . 6 ((𝐹𝑧) = (𝐵 / 𝐴) ↔ (𝐵 / 𝐴) = (𝐹𝑧))
15 simplr 744 . . . . . . . 8 ((((𝜑𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ) ∧ 𝑧 ∈ ℝ) → 𝐵 ∈ ℝ)
1615recnd 10269 . . . . . . 7 ((((𝜑𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ) ∧ 𝑧 ∈ ℝ) → 𝐵 ∈ ℂ)
173ad3antrrr 701 . . . . . . . 8 ((((𝜑𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ) ∧ 𝑧 ∈ ℝ) → 𝐴 ∈ ℝ)
1817recnd 10269 . . . . . . 7 ((((𝜑𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ) ∧ 𝑧 ∈ ℝ) → 𝐴 ∈ ℂ)
196ad2antrr 697 . . . . . . . . 9 (((𝜑𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ) → 𝐹:ℝ⟶ℝ)
2019ffvelrnda 6502 . . . . . . . 8 ((((𝜑𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ) ∧ 𝑧 ∈ ℝ) → (𝐹𝑧) ∈ ℝ)
2120recnd 10269 . . . . . . 7 ((((𝜑𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ) ∧ 𝑧 ∈ ℝ) → (𝐹𝑧) ∈ ℂ)
22 simpllr 752 . . . . . . 7 ((((𝜑𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ) ∧ 𝑧 ∈ ℝ) → 𝐴 ≠ 0)
2316, 18, 21, 22divmuld 11024 . . . . . 6 ((((𝜑𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ) ∧ 𝑧 ∈ ℝ) → ((𝐵 / 𝐴) = (𝐹𝑧) ↔ (𝐴 · (𝐹𝑧)) = 𝐵))
2414, 23syl5bb 272 . . . . 5 ((((𝜑𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ) ∧ 𝑧 ∈ ℝ) → ((𝐹𝑧) = (𝐵 / 𝐴) ↔ (𝐴 · (𝐹𝑧)) = 𝐵))
2513, 24bitr4d 271 . . . 4 ((((𝜑𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ) ∧ 𝑧 ∈ ℝ) → ((((ℝ × {𝐴}) ∘𝑓 · 𝐹)‘𝑧) = 𝐵 ↔ (𝐹𝑧) = (𝐵 / 𝐴)))
2625pm5.32da 560 . . 3 (((𝜑𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ) → ((𝑧 ∈ ℝ ∧ (((ℝ × {𝐴}) ∘𝑓 · 𝐹)‘𝑧) = 𝐵) ↔ (𝑧 ∈ ℝ ∧ (𝐹𝑧) = (𝐵 / 𝐴))))
27 remulcl 10222 . . . . . . . 8 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥 · 𝑦) ∈ ℝ)
2827adantl 467 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → (𝑥 · 𝑦) ∈ ℝ)
29 fconstg 6232 . . . . . . . . 9 (𝐴 ∈ ℝ → (ℝ × {𝐴}):ℝ⟶{𝐴})
303, 29syl 17 . . . . . . . 8 (𝜑 → (ℝ × {𝐴}):ℝ⟶{𝐴})
313snssd 4473 . . . . . . . 8 (𝜑 → {𝐴} ⊆ ℝ)
3230, 31fssd 6197 . . . . . . 7 (𝜑 → (ℝ × {𝐴}):ℝ⟶ℝ)
33 inidm 3969 . . . . . . 7 (ℝ ∩ ℝ) = ℝ
3428, 32, 6, 2, 2, 33off 7058 . . . . . 6 (𝜑 → ((ℝ × {𝐴}) ∘𝑓 · 𝐹):ℝ⟶ℝ)
3534ad2antrr 697 . . . . 5 (((𝜑𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ) → ((ℝ × {𝐴}) ∘𝑓 · 𝐹):ℝ⟶ℝ)
36 ffn 6185 . . . . 5 (((ℝ × {𝐴}) ∘𝑓 · 𝐹):ℝ⟶ℝ → ((ℝ × {𝐴}) ∘𝑓 · 𝐹) Fn ℝ)
3735, 36syl 17 . . . 4 (((𝜑𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ) → ((ℝ × {𝐴}) ∘𝑓 · 𝐹) Fn ℝ)
38 fniniseg 6481 . . . 4 (((ℝ × {𝐴}) ∘𝑓 · 𝐹) Fn ℝ → (𝑧 ∈ (((ℝ × {𝐴}) ∘𝑓 · 𝐹) “ {𝐵}) ↔ (𝑧 ∈ ℝ ∧ (((ℝ × {𝐴}) ∘𝑓 · 𝐹)‘𝑧) = 𝐵)))
3937, 38syl 17 . . 3 (((𝜑𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ) → (𝑧 ∈ (((ℝ × {𝐴}) ∘𝑓 · 𝐹) “ {𝐵}) ↔ (𝑧 ∈ ℝ ∧ (((ℝ × {𝐴}) ∘𝑓 · 𝐹)‘𝑧) = 𝐵)))
4019, 7syl 17 . . . 4 (((𝜑𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ) → 𝐹 Fn ℝ)
41 fniniseg 6481 . . . 4 (𝐹 Fn ℝ → (𝑧 ∈ (𝐹 “ {(𝐵 / 𝐴)}) ↔ (𝑧 ∈ ℝ ∧ (𝐹𝑧) = (𝐵 / 𝐴))))
4240, 41syl 17 . . 3 (((𝜑𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ) → (𝑧 ∈ (𝐹 “ {(𝐵 / 𝐴)}) ↔ (𝑧 ∈ ℝ ∧ (𝐹𝑧) = (𝐵 / 𝐴))))
4326, 39, 423bitr4d 300 . 2 (((𝜑𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ) → (𝑧 ∈ (((ℝ × {𝐴}) ∘𝑓 · 𝐹) “ {𝐵}) ↔ 𝑧 ∈ (𝐹 “ {(𝐵 / 𝐴)})))
4443eqrdv 2768 1 (((𝜑𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ) → (((ℝ × {𝐴}) ∘𝑓 · 𝐹) “ {𝐵}) = (𝐹 “ {(𝐵 / 𝐴)}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 382   = wceq 1630  wcel 2144  wne 2942  Vcvv 3349  {csn 4314   × cxp 5247  ccnv 5248  dom cdm 5249  cima 5252   Fn wfn 6026  wf 6027  cfv 6031  (class class class)co 6792  𝑓 cof 7041  cr 10136  0cc0 10137   · cmul 10142   / cdiv 10885  1citg1 23602
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1869  ax-4 1884  ax-5 1990  ax-6 2056  ax-7 2092  ax-8 2146  ax-9 2153  ax-10 2173  ax-11 2189  ax-12 2202  ax-13 2407  ax-ext 2750  ax-rep 4902  ax-sep 4912  ax-nul 4920  ax-pow 4971  ax-pr 5034  ax-un 7095  ax-cnex 10193  ax-resscn 10194  ax-1cn 10195  ax-icn 10196  ax-addcl 10197  ax-addrcl 10198  ax-mulcl 10199  ax-mulrcl 10200  ax-mulcom 10201  ax-addass 10202  ax-mulass 10203  ax-distr 10204  ax-i2m1 10205  ax-1ne0 10206  ax-1rid 10207  ax-rnegex 10208  ax-rrecex 10209  ax-cnre 10210  ax-pre-lttri 10211  ax-pre-lttrn 10212  ax-pre-ltadd 10213  ax-pre-mulgt0 10214
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 827  df-3or 1071  df-3an 1072  df-tru 1633  df-ex 1852  df-nf 1857  df-sb 2049  df-eu 2621  df-mo 2622  df-clab 2757  df-cleq 2763  df-clel 2766  df-nfc 2901  df-ne 2943  df-nel 3046  df-ral 3065  df-rex 3066  df-reu 3067  df-rmo 3068  df-rab 3069  df-v 3351  df-sbc 3586  df-csb 3681  df-dif 3724  df-un 3726  df-in 3728  df-ss 3735  df-nul 4062  df-if 4224  df-pw 4297  df-sn 4315  df-pr 4317  df-op 4321  df-uni 4573  df-iun 4654  df-br 4785  df-opab 4845  df-mpt 4862  df-id 5157  df-po 5170  df-so 5171  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-riota 6753  df-ov 6795  df-oprab 6796  df-mpt2 6797  df-of 7043  df-er 7895  df-en 8109  df-dom 8110  df-sdom 8111  df-pnf 10277  df-mnf 10278  df-xr 10279  df-ltxr 10280  df-le 10281  df-sub 10469  df-neg 10470  df-div 10886  df-sum 14624  df-itg1 23607
This theorem is referenced by:  i1fmulc  23689  itg1mulc  23690
  Copyright terms: Public domain W3C validator