![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > i1ff | Structured version Visualization version GIF version |
Description: A simple function is a function on the reals. (Contributed by Mario Carneiro, 26-Jun-2014.) |
Ref | Expression |
---|---|
i1ff | ⊢ (𝐹 ∈ dom ∫1 → 𝐹:ℝ⟶ℝ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isi1f 23661 | . . 3 ⊢ (𝐹 ∈ dom ∫1 ↔ (𝐹 ∈ MblFn ∧ (𝐹:ℝ⟶ℝ ∧ ran 𝐹 ∈ Fin ∧ (vol‘(◡𝐹 “ (ℝ ∖ {0}))) ∈ ℝ))) | |
2 | 1 | simprbi 483 | . 2 ⊢ (𝐹 ∈ dom ∫1 → (𝐹:ℝ⟶ℝ ∧ ran 𝐹 ∈ Fin ∧ (vol‘(◡𝐹 “ (ℝ ∖ {0}))) ∈ ℝ)) |
3 | 2 | simp1d 1137 | 1 ⊢ (𝐹 ∈ dom ∫1 → 𝐹:ℝ⟶ℝ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1072 ∈ wcel 2140 ∖ cdif 3713 {csn 4322 ◡ccnv 5266 dom cdm 5267 ran crn 5268 “ cima 5270 ⟶wf 6046 ‘cfv 6050 Fincfn 8124 ℝcr 10148 0cc0 10149 volcvol 23453 MblFncmbf 23603 ∫1citg1 23604 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1989 ax-6 2055 ax-7 2091 ax-9 2149 ax-10 2169 ax-11 2184 ax-12 2197 ax-13 2392 ax-ext 2741 ax-sep 4934 ax-nul 4942 ax-pr 5056 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2048 df-eu 2612 df-mo 2613 df-clab 2748 df-cleq 2754 df-clel 2757 df-nfc 2892 df-ral 3056 df-rex 3057 df-rab 3060 df-v 3343 df-sbc 3578 df-dif 3719 df-un 3721 df-in 3723 df-ss 3730 df-nul 4060 df-if 4232 df-sn 4323 df-pr 4325 df-op 4329 df-uni 4590 df-br 4806 df-opab 4866 df-mpt 4883 df-id 5175 df-xp 5273 df-rel 5274 df-cnv 5275 df-co 5276 df-dm 5277 df-rn 5278 df-res 5279 df-ima 5280 df-iota 6013 df-fun 6052 df-fn 6053 df-f 6054 df-fv 6058 df-sum 14637 df-itg1 23609 |
This theorem is referenced by: i1fima 23665 i1fima2 23666 i1f0rn 23669 itg1val2 23671 itg1cl 23672 itg1ge0 23673 i1faddlem 23680 i1fmullem 23681 i1fadd 23682 i1fmul 23683 itg1addlem4 23686 itg1addlem5 23687 i1fmulclem 23689 i1fmulc 23690 itg1mulc 23691 i1fres 23692 i1fpos 23693 i1fposd 23694 i1fsub 23695 itg1sub 23696 itg10a 23697 itg1ge0a 23698 itg1lea 23699 itg1le 23700 itg1climres 23701 mbfi1fseqlem5 23706 mbfi1fseqlem6 23707 mbfi1flimlem 23709 mbfmullem2 23711 itg2itg1 23723 itg20 23724 itg2le 23726 itg2seq 23729 itg2uba 23730 itg2lea 23731 itg2mulclem 23733 itg2splitlem 23735 itg2split 23736 itg2monolem1 23737 itg2i1fseqle 23741 itg2i1fseq 23742 itg2addlem 23745 i1fibl 23794 itgitg1 23795 itg2addnclem 33793 itg2addnclem2 33794 itg2addnclem3 33795 itg2addnc 33796 ftc1anclem3 33819 ftc1anclem4 33820 ftc1anclem5 33821 ftc1anclem6 33822 ftc1anclem7 33823 ftc1anclem8 33824 ftc1anc 33825 |
Copyright terms: Public domain | W3C validator |