![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > hvsubvali | Structured version Visualization version GIF version |
Description: Value of vector subtraction definition. (Contributed by NM, 3-Sep-1999.) (New usage is discouraged.) |
Ref | Expression |
---|---|
hvaddcl.1 | ⊢ 𝐴 ∈ ℋ |
hvaddcl.2 | ⊢ 𝐵 ∈ ℋ |
Ref | Expression |
---|---|
hvsubvali | ⊢ (𝐴 −ℎ 𝐵) = (𝐴 +ℎ (-1 ·ℎ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hvaddcl.1 | . 2 ⊢ 𝐴 ∈ ℋ | |
2 | hvaddcl.2 | . 2 ⊢ 𝐵 ∈ ℋ | |
3 | hvsubval 28213 | . 2 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 −ℎ 𝐵) = (𝐴 +ℎ (-1 ·ℎ 𝐵))) | |
4 | 1, 2, 3 | mp2an 672 | 1 ⊢ (𝐴 −ℎ 𝐵) = (𝐴 +ℎ (-1 ·ℎ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1631 ∈ wcel 2145 (class class class)co 6793 1c1 10139 -cneg 10469 ℋchil 28116 +ℎ cva 28117 ·ℎ csm 28118 −ℎ cmv 28122 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-sep 4915 ax-nul 4923 ax-pr 5034 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ral 3066 df-rex 3067 df-rab 3070 df-v 3353 df-sbc 3588 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-nul 4064 df-if 4226 df-sn 4317 df-pr 4319 df-op 4323 df-uni 4575 df-br 4787 df-opab 4847 df-id 5157 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-iota 5994 df-fun 6033 df-fv 6039 df-ov 6796 df-oprab 6797 df-mpt2 6798 df-hvsub 28168 |
This theorem is referenced by: hvsubsub4i 28256 hvnegdii 28259 hvsubeq0i 28260 hvsubcan2i 28261 hvsubaddi 28263 normlem0 28306 normlem9 28315 norm3difi 28344 normpar2i 28353 pjsubii 28877 pjssmii 28880 pjcji 28883 lnophmlem2 29216 |
Copyright terms: Public domain | W3C validator |