![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > hvsubass | Structured version Visualization version GIF version |
Description: Hilbert vector space associative law for subtraction. (Contributed by Mario Carneiro, 15-May-2014.) (New usage is discouraged.) |
Ref | Expression |
---|---|
hvsubass | ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 −ℎ 𝐵) −ℎ 𝐶) = (𝐴 −ℎ (𝐵 +ℎ 𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | neg1cn 11336 | . . . 4 ⊢ -1 ∈ ℂ | |
2 | hvmulcl 28200 | . . . 4 ⊢ ((-1 ∈ ℂ ∧ 𝐵 ∈ ℋ) → (-1 ·ℎ 𝐵) ∈ ℋ) | |
3 | 1, 2 | mpan 708 | . . 3 ⊢ (𝐵 ∈ ℋ → (-1 ·ℎ 𝐵) ∈ ℋ) |
4 | hvaddsubass 28228 | . . 3 ⊢ ((𝐴 ∈ ℋ ∧ (-1 ·ℎ 𝐵) ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 +ℎ (-1 ·ℎ 𝐵)) −ℎ 𝐶) = (𝐴 +ℎ ((-1 ·ℎ 𝐵) −ℎ 𝐶))) | |
5 | 3, 4 | syl3an2 1168 | . 2 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 +ℎ (-1 ·ℎ 𝐵)) −ℎ 𝐶) = (𝐴 +ℎ ((-1 ·ℎ 𝐵) −ℎ 𝐶))) |
6 | hvsubval 28203 | . . . 4 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 −ℎ 𝐵) = (𝐴 +ℎ (-1 ·ℎ 𝐵))) | |
7 | 6 | 3adant3 1127 | . . 3 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (𝐴 −ℎ 𝐵) = (𝐴 +ℎ (-1 ·ℎ 𝐵))) |
8 | 7 | oveq1d 6829 | . 2 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 −ℎ 𝐵) −ℎ 𝐶) = ((𝐴 +ℎ (-1 ·ℎ 𝐵)) −ℎ 𝐶)) |
9 | simp1 1131 | . . . 4 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → 𝐴 ∈ ℋ) | |
10 | hvaddcl 28199 | . . . . 5 ⊢ ((𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (𝐵 +ℎ 𝐶) ∈ ℋ) | |
11 | 10 | 3adant1 1125 | . . . 4 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (𝐵 +ℎ 𝐶) ∈ ℋ) |
12 | hvsubval 28203 | . . . 4 ⊢ ((𝐴 ∈ ℋ ∧ (𝐵 +ℎ 𝐶) ∈ ℋ) → (𝐴 −ℎ (𝐵 +ℎ 𝐶)) = (𝐴 +ℎ (-1 ·ℎ (𝐵 +ℎ 𝐶)))) | |
13 | 9, 11, 12 | syl2anc 696 | . . 3 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (𝐴 −ℎ (𝐵 +ℎ 𝐶)) = (𝐴 +ℎ (-1 ·ℎ (𝐵 +ℎ 𝐶)))) |
14 | hvsubval 28203 | . . . . . . 7 ⊢ (((-1 ·ℎ 𝐵) ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((-1 ·ℎ 𝐵) −ℎ 𝐶) = ((-1 ·ℎ 𝐵) +ℎ (-1 ·ℎ 𝐶))) | |
15 | 3, 14 | sylan 489 | . . . . . 6 ⊢ ((𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((-1 ·ℎ 𝐵) −ℎ 𝐶) = ((-1 ·ℎ 𝐵) +ℎ (-1 ·ℎ 𝐶))) |
16 | 15 | 3adant1 1125 | . . . . 5 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((-1 ·ℎ 𝐵) −ℎ 𝐶) = ((-1 ·ℎ 𝐵) +ℎ (-1 ·ℎ 𝐶))) |
17 | ax-hvdistr1 28195 | . . . . . . 7 ⊢ ((-1 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (-1 ·ℎ (𝐵 +ℎ 𝐶)) = ((-1 ·ℎ 𝐵) +ℎ (-1 ·ℎ 𝐶))) | |
18 | 1, 17 | mp3an1 1560 | . . . . . 6 ⊢ ((𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (-1 ·ℎ (𝐵 +ℎ 𝐶)) = ((-1 ·ℎ 𝐵) +ℎ (-1 ·ℎ 𝐶))) |
19 | 18 | 3adant1 1125 | . . . . 5 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (-1 ·ℎ (𝐵 +ℎ 𝐶)) = ((-1 ·ℎ 𝐵) +ℎ (-1 ·ℎ 𝐶))) |
20 | 16, 19 | eqtr4d 2797 | . . . 4 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((-1 ·ℎ 𝐵) −ℎ 𝐶) = (-1 ·ℎ (𝐵 +ℎ 𝐶))) |
21 | 20 | oveq2d 6830 | . . 3 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (𝐴 +ℎ ((-1 ·ℎ 𝐵) −ℎ 𝐶)) = (𝐴 +ℎ (-1 ·ℎ (𝐵 +ℎ 𝐶)))) |
22 | 13, 21 | eqtr4d 2797 | . 2 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (𝐴 −ℎ (𝐵 +ℎ 𝐶)) = (𝐴 +ℎ ((-1 ·ℎ 𝐵) −ℎ 𝐶))) |
23 | 5, 8, 22 | 3eqtr4d 2804 | 1 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 −ℎ 𝐵) −ℎ 𝐶) = (𝐴 −ℎ (𝐵 +ℎ 𝐶))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1072 = wceq 1632 ∈ wcel 2139 (class class class)co 6814 ℂcc 10146 1c1 10149 -cneg 10479 ℋchil 28106 +ℎ cva 28107 ·ℎ csm 28108 −ℎ cmv 28112 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7115 ax-resscn 10205 ax-1cn 10206 ax-icn 10207 ax-addcl 10208 ax-addrcl 10209 ax-mulcl 10210 ax-mulrcl 10211 ax-mulcom 10212 ax-addass 10213 ax-mulass 10214 ax-distr 10215 ax-i2m1 10216 ax-1ne0 10217 ax-1rid 10218 ax-rnegex 10219 ax-rrecex 10220 ax-cnre 10221 ax-pre-lttri 10222 ax-pre-lttrn 10223 ax-pre-ltadd 10224 ax-hfvadd 28187 ax-hvass 28189 ax-hfvmul 28192 ax-hvdistr1 28195 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-nel 3036 df-ral 3055 df-rex 3056 df-reu 3057 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-op 4328 df-uni 4589 df-iun 4674 df-br 4805 df-opab 4865 df-mpt 4882 df-id 5174 df-po 5187 df-so 5188 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-f1 6054 df-fo 6055 df-f1o 6056 df-fv 6057 df-riota 6775 df-ov 6817 df-oprab 6818 df-mpt2 6819 df-er 7913 df-en 8124 df-dom 8125 df-sdom 8126 df-pnf 10288 df-mnf 10289 df-ltxr 10291 df-sub 10480 df-neg 10481 df-hvsub 28158 |
This theorem is referenced by: hvsub32 28232 hvsubassi 28242 pjhthlem1 28580 |
Copyright terms: Public domain | W3C validator |