Hilbert Space Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  HSE Home  >  Th. List  >  hvsubadd Structured version   Visualization version   GIF version

 Description: Relationship between vector subtraction and addition. (Contributed by NM, 30-Oct-1999.) (New usage is discouraged.)
Assertion
Ref Expression
hvsubadd ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 𝐵) = 𝐶 ↔ (𝐵 + 𝐶) = 𝐴))

StepHypRef Expression
1 oveq1 6803 . . . 4 (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0) → (𝐴 𝐵) = (if(𝐴 ∈ ℋ, 𝐴, 0) − 𝐵))
21eqeq1d 2773 . . 3 (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0) → ((𝐴 𝐵) = 𝐶 ↔ (if(𝐴 ∈ ℋ, 𝐴, 0) − 𝐵) = 𝐶))
3 eqeq2 2782 . . 3 (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0) → ((𝐵 + 𝐶) = 𝐴 ↔ (𝐵 + 𝐶) = if(𝐴 ∈ ℋ, 𝐴, 0)))
42, 3bibi12d 334 . 2 (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0) → (((𝐴 𝐵) = 𝐶 ↔ (𝐵 + 𝐶) = 𝐴) ↔ ((if(𝐴 ∈ ℋ, 𝐴, 0) − 𝐵) = 𝐶 ↔ (𝐵 + 𝐶) = if(𝐴 ∈ ℋ, 𝐴, 0))))
5 oveq2 6804 . . . 4 (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0) → (if(𝐴 ∈ ℋ, 𝐴, 0) − 𝐵) = (if(𝐴 ∈ ℋ, 𝐴, 0) − if(𝐵 ∈ ℋ, 𝐵, 0)))
65eqeq1d 2773 . . 3 (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0) → ((if(𝐴 ∈ ℋ, 𝐴, 0) − 𝐵) = 𝐶 ↔ (if(𝐴 ∈ ℋ, 𝐴, 0) − if(𝐵 ∈ ℋ, 𝐵, 0)) = 𝐶))
7 oveq1 6803 . . . 4 (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0) → (𝐵 + 𝐶) = (if(𝐵 ∈ ℋ, 𝐵, 0) + 𝐶))
87eqeq1d 2773 . . 3 (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0) → ((𝐵 + 𝐶) = if(𝐴 ∈ ℋ, 𝐴, 0) ↔ (if(𝐵 ∈ ℋ, 𝐵, 0) + 𝐶) = if(𝐴 ∈ ℋ, 𝐴, 0)))
96, 8bibi12d 334 . 2 (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0) → (((if(𝐴 ∈ ℋ, 𝐴, 0) − 𝐵) = 𝐶 ↔ (𝐵 + 𝐶) = if(𝐴 ∈ ℋ, 𝐴, 0)) ↔ ((if(𝐴 ∈ ℋ, 𝐴, 0) − if(𝐵 ∈ ℋ, 𝐵, 0)) = 𝐶 ↔ (if(𝐵 ∈ ℋ, 𝐵, 0) + 𝐶) = if(𝐴 ∈ ℋ, 𝐴, 0))))
10 eqeq2 2782 . . 3 (𝐶 = if(𝐶 ∈ ℋ, 𝐶, 0) → ((if(𝐴 ∈ ℋ, 𝐴, 0) − if(𝐵 ∈ ℋ, 𝐵, 0)) = 𝐶 ↔ (if(𝐴 ∈ ℋ, 𝐴, 0) − if(𝐵 ∈ ℋ, 𝐵, 0)) = if(𝐶 ∈ ℋ, 𝐶, 0)))
11 oveq2 6804 . . . 4 (𝐶 = if(𝐶 ∈ ℋ, 𝐶, 0) → (if(𝐵 ∈ ℋ, 𝐵, 0) + 𝐶) = (if(𝐵 ∈ ℋ, 𝐵, 0) + if(𝐶 ∈ ℋ, 𝐶, 0)))
1211eqeq1d 2773 . . 3 (𝐶 = if(𝐶 ∈ ℋ, 𝐶, 0) → ((if(𝐵 ∈ ℋ, 𝐵, 0) + 𝐶) = if(𝐴 ∈ ℋ, 𝐴, 0) ↔ (if(𝐵 ∈ ℋ, 𝐵, 0) + if(𝐶 ∈ ℋ, 𝐶, 0)) = if(𝐴 ∈ ℋ, 𝐴, 0)))
1310, 12bibi12d 334 . 2 (𝐶 = if(𝐶 ∈ ℋ, 𝐶, 0) → (((if(𝐴 ∈ ℋ, 𝐴, 0) − if(𝐵 ∈ ℋ, 𝐵, 0)) = 𝐶 ↔ (if(𝐵 ∈ ℋ, 𝐵, 0) + 𝐶) = if(𝐴 ∈ ℋ, 𝐴, 0)) ↔ ((if(𝐴 ∈ ℋ, 𝐴, 0) − if(𝐵 ∈ ℋ, 𝐵, 0)) = if(𝐶 ∈ ℋ, 𝐶, 0) ↔ (if(𝐵 ∈ ℋ, 𝐵, 0) + if(𝐶 ∈ ℋ, 𝐶, 0)) = if(𝐴 ∈ ℋ, 𝐴, 0))))
14 ifhvhv0 28219 . . 3 if(𝐴 ∈ ℋ, 𝐴, 0) ∈ ℋ
15 ifhvhv0 28219 . . 3 if(𝐵 ∈ ℋ, 𝐵, 0) ∈ ℋ
16 ifhvhv0 28219 . . 3 if(𝐶 ∈ ℋ, 𝐶, 0) ∈ ℋ
1714, 15, 16hvsubaddi 28263 . 2 ((if(𝐴 ∈ ℋ, 𝐴, 0) − if(𝐵 ∈ ℋ, 𝐵, 0)) = if(𝐶 ∈ ℋ, 𝐶, 0) ↔ (if(𝐵 ∈ ℋ, 𝐵, 0) + if(𝐶 ∈ ℋ, 𝐶, 0)) = if(𝐴 ∈ ℋ, 𝐴, 0))
184, 9, 13, 17dedth3h 4281 1 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 𝐵) = 𝐶 ↔ (𝐵 + 𝐶) = 𝐴))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∧ w3a 1071   = wceq 1631   ∈ wcel 2145  ifcif 4226  (class class class)co 6796   ℋchil 28116   +ℎ cva 28117  0ℎc0v 28121   −ℎ cmv 28122 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-sep 4916  ax-nul 4924  ax-pow 4975  ax-pr 5035  ax-un 7100  ax-resscn 10199  ax-1cn 10200  ax-icn 10201  ax-addcl 10202  ax-addrcl 10203  ax-mulcl 10204  ax-mulrcl 10205  ax-mulcom 10206  ax-addass 10207  ax-mulass 10208  ax-distr 10209  ax-i2m1 10210  ax-1ne0 10211  ax-1rid 10212  ax-rnegex 10213  ax-rrecex 10214  ax-cnre 10215  ax-pre-lttri 10216  ax-pre-lttrn 10217  ax-pre-ltadd 10218  ax-hfvadd 28197  ax-hvcom 28198  ax-hvass 28199  ax-hv0cl 28200  ax-hvaddid 28201  ax-hfvmul 28202  ax-hvmulid 28203  ax-hvdistr2 28206  ax-hvmul0 28207 This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-nul 4064  df-if 4227  df-pw 4300  df-sn 4318  df-pr 4320  df-op 4324  df-uni 4576  df-iun 4657  df-br 4788  df-opab 4848  df-mpt 4865  df-id 5158  df-po 5171  df-so 5172  df-xp 5256  df-rel 5257  df-cnv 5258  df-co 5259  df-dm 5260  df-rn 5261  df-res 5262  df-ima 5263  df-iota 5993  df-fun 6032  df-fn 6033  df-f 6034  df-f1 6035  df-fo 6036  df-f1o 6037  df-fv 6038  df-riota 6757  df-ov 6799  df-oprab 6800  df-mpt2 6801  df-er 7900  df-en 8114  df-dom 8115  df-sdom 8116  df-pnf 10282  df-mnf 10283  df-ltxr 10285  df-sub 10474  df-neg 10475  df-hvsub 28168 This theorem is referenced by:  shmodsi  28588  pjop  28626  pjpo  28627  chscllem2  28837  pjo  28870  hodsi  28974  pjimai  29375  superpos  29553  sumdmdii  29614  sumdmdlem  29617
 Copyright terms: Public domain W3C validator