HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hvpncan Structured version   Visualization version   GIF version

Theorem hvpncan 28236
Description: Addition/subtraction cancellation law for vectors in Hilbert space. (Contributed by NM, 7-Jun-2004.) (New usage is discouraged.)
Assertion
Ref Expression
hvpncan ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → ((𝐴 + 𝐵) − 𝐵) = 𝐴)

Proof of Theorem hvpncan
StepHypRef Expression
1 hvaddcl 28209 . . 3 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 + 𝐵) ∈ ℋ)
2 hvsubval 28213 . . 3 (((𝐴 + 𝐵) ∈ ℋ ∧ 𝐵 ∈ ℋ) → ((𝐴 + 𝐵) − 𝐵) = ((𝐴 + 𝐵) + (-1 · 𝐵)))
31, 2sylancom 576 . 2 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → ((𝐴 + 𝐵) − 𝐵) = ((𝐴 + 𝐵) + (-1 · 𝐵)))
4 neg1cn 11326 . . . . 5 -1 ∈ ℂ
5 hvmulcl 28210 . . . . 5 ((-1 ∈ ℂ ∧ 𝐵 ∈ ℋ) → (-1 · 𝐵) ∈ ℋ)
64, 5mpan 670 . . . 4 (𝐵 ∈ ℋ → (-1 · 𝐵) ∈ ℋ)
76ancli 538 . . 3 (𝐵 ∈ ℋ → (𝐵 ∈ ℋ ∧ (-1 · 𝐵) ∈ ℋ))
8 ax-hvass 28199 . . . 4 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ (-1 · 𝐵) ∈ ℋ) → ((𝐴 + 𝐵) + (-1 · 𝐵)) = (𝐴 + (𝐵 + (-1 · 𝐵))))
983expb 1113 . . 3 ((𝐴 ∈ ℋ ∧ (𝐵 ∈ ℋ ∧ (-1 · 𝐵) ∈ ℋ)) → ((𝐴 + 𝐵) + (-1 · 𝐵)) = (𝐴 + (𝐵 + (-1 · 𝐵))))
107, 9sylan2 580 . 2 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → ((𝐴 + 𝐵) + (-1 · 𝐵)) = (𝐴 + (𝐵 + (-1 · 𝐵))))
11 hvnegid 28224 . . . 4 (𝐵 ∈ ℋ → (𝐵 + (-1 · 𝐵)) = 0)
1211oveq2d 6809 . . 3 (𝐵 ∈ ℋ → (𝐴 + (𝐵 + (-1 · 𝐵))) = (𝐴 + 0))
13 ax-hvaddid 28201 . . 3 (𝐴 ∈ ℋ → (𝐴 + 0) = 𝐴)
1412, 13sylan9eqr 2827 . 2 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 + (𝐵 + (-1 · 𝐵))) = 𝐴)
153, 10, 143eqtrd 2809 1 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → ((𝐴 + 𝐵) − 𝐵) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382   = wceq 1631  wcel 2145  (class class class)co 6793  cc 10136  1c1 10139  -cneg 10469  chil 28116   + cva 28117   · csm 28118  0c0v 28121   cmv 28122
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7096  ax-resscn 10195  ax-1cn 10196  ax-icn 10197  ax-addcl 10198  ax-addrcl 10199  ax-mulcl 10200  ax-mulrcl 10201  ax-mulcom 10202  ax-addass 10203  ax-mulass 10204  ax-distr 10205  ax-i2m1 10206  ax-1ne0 10207  ax-1rid 10208  ax-rnegex 10209  ax-rrecex 10210  ax-cnre 10211  ax-pre-lttri 10212  ax-pre-lttrn 10213  ax-pre-ltadd 10214  ax-hfvadd 28197  ax-hvass 28199  ax-hvaddid 28201  ax-hfvmul 28202  ax-hvmulid 28203  ax-hvdistr2 28206  ax-hvmul0 28207
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-op 4323  df-uni 4575  df-iun 4656  df-br 4787  df-opab 4847  df-mpt 4864  df-id 5157  df-po 5170  df-so 5171  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-riota 6754  df-ov 6796  df-oprab 6797  df-mpt2 6798  df-er 7896  df-en 8110  df-dom 8111  df-sdom 8112  df-pnf 10278  df-mnf 10279  df-ltxr 10281  df-sub 10470  df-neg 10471  df-hvsub 28168
This theorem is referenced by:  hvpncan2  28237  mayete3i  28927  lnop0  29165
  Copyright terms: Public domain W3C validator