![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > hvmulcl | Structured version Visualization version GIF version |
Description: Closure of scalar multiplication. (Contributed by NM, 19-Apr-2007.) (New usage is discouraged.) |
Ref | Expression |
---|---|
hvmulcl | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) → (𝐴 ·ℎ 𝐵) ∈ ℋ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-hfvmul 28196 | . 2 ⊢ ·ℎ :(ℂ × ℋ)⟶ ℋ | |
2 | 1 | fovcl 6911 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) → (𝐴 ·ℎ 𝐵) ∈ ℋ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 382 ∈ wcel 2144 (class class class)co 6792 ℂcc 10135 ℋchil 28110 ·ℎ csm 28112 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1869 ax-4 1884 ax-5 1990 ax-6 2056 ax-7 2092 ax-9 2153 ax-10 2173 ax-11 2189 ax-12 2202 ax-13 2407 ax-ext 2750 ax-sep 4912 ax-nul 4920 ax-pr 5034 ax-hfvmul 28196 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 827 df-3an 1072 df-tru 1633 df-ex 1852 df-nf 1857 df-sb 2049 df-eu 2621 df-mo 2622 df-clab 2757 df-cleq 2763 df-clel 2766 df-nfc 2901 df-ral 3065 df-rex 3066 df-rab 3069 df-v 3351 df-sbc 3586 df-csb 3681 df-dif 3724 df-un 3726 df-in 3728 df-ss 3735 df-nul 4062 df-if 4224 df-sn 4315 df-pr 4317 df-op 4321 df-uni 4573 df-iun 4654 df-br 4785 df-opab 4845 df-mpt 4862 df-id 5157 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-iota 5994 df-fun 6033 df-fn 6034 df-f 6035 df-fv 6039 df-ov 6795 |
This theorem is referenced by: hvmulcli 28205 hvsubf 28206 hvsubcl 28208 hv2neg 28219 hvaddsubval 28224 hvsub4 28228 hvaddsub12 28229 hvpncan 28230 hvaddsubass 28232 hvsubass 28235 hvsubdistr1 28240 hvsubdistr2 28241 hvaddeq0 28260 hvmulcan 28263 hvmulcan2 28264 hvsubcan 28265 his5 28277 his35 28279 hiassdi 28282 his2sub 28283 hilablo 28351 helch 28434 ocsh 28476 h1de2ci 28749 spansncol 28761 spanunsni 28772 mayete3i 28921 homcl 28939 homulcl 28952 unoplin 29113 hmoplin 29135 bramul 29139 bralnfn 29141 brafnmul 29144 kbop 29146 kbmul 29148 lnopmul 29160 lnopaddmuli 29166 lnopsubmuli 29168 lnopmulsubi 29169 0lnfn 29178 nmlnop0iALT 29188 lnopmi 29193 lnophsi 29194 lnopcoi 29196 lnopeq0i 29200 nmbdoplbi 29217 nmcexi 29219 nmcoplbi 29221 lnfnmuli 29237 lnfnaddmuli 29238 nmbdfnlbi 29242 nmcfnlbi 29245 nlelshi 29253 riesz3i 29255 cnlnadjlem2 29261 cnlnadjlem6 29265 adjlnop 29279 nmopcoi 29288 branmfn 29298 cnvbramul 29308 kbass2 29310 kbass5 29313 superpos 29547 cdj1i 29626 |
Copyright terms: Public domain | W3C validator |