![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > hvmulcan | Structured version Visualization version GIF version |
Description: Cancellation law for scalar multiplication. (Contributed by NM, 19-May-2005.) (New usage is discouraged.) |
Ref | Expression |
---|---|
hvmulcan | ⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 ·ℎ 𝐵) = (𝐴 ·ℎ 𝐶) ↔ 𝐵 = 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ne 2944 | . . . . 5 ⊢ (𝐴 ≠ 0 ↔ ¬ 𝐴 = 0) | |
2 | biorf 922 | . . . . 5 ⊢ (¬ 𝐴 = 0 → ((𝐵 −ℎ 𝐶) = 0ℎ ↔ (𝐴 = 0 ∨ (𝐵 −ℎ 𝐶) = 0ℎ))) | |
3 | 1, 2 | sylbi 207 | . . . 4 ⊢ (𝐴 ≠ 0 → ((𝐵 −ℎ 𝐶) = 0ℎ ↔ (𝐴 = 0 ∨ (𝐵 −ℎ 𝐶) = 0ℎ))) |
4 | 3 | ad2antlr 706 | . . 3 ⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℋ) → ((𝐵 −ℎ 𝐶) = 0ℎ ↔ (𝐴 = 0 ∨ (𝐵 −ℎ 𝐶) = 0ℎ))) |
5 | 4 | 3adant3 1126 | . 2 ⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐵 −ℎ 𝐶) = 0ℎ ↔ (𝐴 = 0 ∨ (𝐵 −ℎ 𝐶) = 0ℎ))) |
6 | hvsubeq0 28265 | . . 3 ⊢ ((𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐵 −ℎ 𝐶) = 0ℎ ↔ 𝐵 = 𝐶)) | |
7 | 6 | 3adant1 1124 | . 2 ⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐵 −ℎ 𝐶) = 0ℎ ↔ 𝐵 = 𝐶)) |
8 | hvsubdistr1 28246 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (𝐴 ·ℎ (𝐵 −ℎ 𝐶)) = ((𝐴 ·ℎ 𝐵) −ℎ (𝐴 ·ℎ 𝐶))) | |
9 | 8 | eqeq1d 2773 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 ·ℎ (𝐵 −ℎ 𝐶)) = 0ℎ ↔ ((𝐴 ·ℎ 𝐵) −ℎ (𝐴 ·ℎ 𝐶)) = 0ℎ)) |
10 | hvsubcl 28214 | . . . . . 6 ⊢ ((𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (𝐵 −ℎ 𝐶) ∈ ℋ) | |
11 | hvmul0or 28222 | . . . . . 6 ⊢ ((𝐴 ∈ ℂ ∧ (𝐵 −ℎ 𝐶) ∈ ℋ) → ((𝐴 ·ℎ (𝐵 −ℎ 𝐶)) = 0ℎ ↔ (𝐴 = 0 ∨ (𝐵 −ℎ 𝐶) = 0ℎ))) | |
12 | 10, 11 | sylan2 580 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ)) → ((𝐴 ·ℎ (𝐵 −ℎ 𝐶)) = 0ℎ ↔ (𝐴 = 0 ∨ (𝐵 −ℎ 𝐶) = 0ℎ))) |
13 | 12 | 3impb 1107 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 ·ℎ (𝐵 −ℎ 𝐶)) = 0ℎ ↔ (𝐴 = 0 ∨ (𝐵 −ℎ 𝐶) = 0ℎ))) |
14 | hvmulcl 28210 | . . . . . 6 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) → (𝐴 ·ℎ 𝐵) ∈ ℋ) | |
15 | 14 | 3adant3 1126 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (𝐴 ·ℎ 𝐵) ∈ ℋ) |
16 | hvmulcl 28210 | . . . . . 6 ⊢ ((𝐴 ∈ ℂ ∧ 𝐶 ∈ ℋ) → (𝐴 ·ℎ 𝐶) ∈ ℋ) | |
17 | 16 | 3adant2 1125 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (𝐴 ·ℎ 𝐶) ∈ ℋ) |
18 | hvsubeq0 28265 | . . . . 5 ⊢ (((𝐴 ·ℎ 𝐵) ∈ ℋ ∧ (𝐴 ·ℎ 𝐶) ∈ ℋ) → (((𝐴 ·ℎ 𝐵) −ℎ (𝐴 ·ℎ 𝐶)) = 0ℎ ↔ (𝐴 ·ℎ 𝐵) = (𝐴 ·ℎ 𝐶))) | |
19 | 15, 17, 18 | syl2anc 573 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (((𝐴 ·ℎ 𝐵) −ℎ (𝐴 ·ℎ 𝐶)) = 0ℎ ↔ (𝐴 ·ℎ 𝐵) = (𝐴 ·ℎ 𝐶))) |
20 | 9, 13, 19 | 3bitr3d 298 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 = 0 ∨ (𝐵 −ℎ 𝐶) = 0ℎ) ↔ (𝐴 ·ℎ 𝐵) = (𝐴 ·ℎ 𝐶))) |
21 | 20 | 3adant1r 1187 | . 2 ⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 = 0 ∨ (𝐵 −ℎ 𝐶) = 0ℎ) ↔ (𝐴 ·ℎ 𝐵) = (𝐴 ·ℎ 𝐶))) |
22 | 5, 7, 21 | 3bitr3rd 299 | 1 ⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 ·ℎ 𝐵) = (𝐴 ·ℎ 𝐶) ↔ 𝐵 = 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 196 ∧ wa 382 ∨ wo 836 ∧ w3a 1071 = wceq 1631 ∈ wcel 2145 ≠ wne 2943 (class class class)co 6793 ℂcc 10136 0cc0 10138 ℋchil 28116 ·ℎ csm 28118 0ℎc0v 28121 −ℎ cmv 28122 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-sep 4915 ax-nul 4923 ax-pow 4974 ax-pr 5034 ax-un 7096 ax-resscn 10195 ax-1cn 10196 ax-icn 10197 ax-addcl 10198 ax-addrcl 10199 ax-mulcl 10200 ax-mulrcl 10201 ax-mulcom 10202 ax-addass 10203 ax-mulass 10204 ax-distr 10205 ax-i2m1 10206 ax-1ne0 10207 ax-1rid 10208 ax-rnegex 10209 ax-rrecex 10210 ax-cnre 10211 ax-pre-lttri 10212 ax-pre-lttrn 10213 ax-pre-ltadd 10214 ax-pre-mulgt0 10215 ax-hfvadd 28197 ax-hvcom 28198 ax-hvass 28199 ax-hv0cl 28200 ax-hvaddid 28201 ax-hfvmul 28202 ax-hvmulid 28203 ax-hvmulass 28204 ax-hvdistr1 28205 ax-hvdistr2 28206 ax-hvmul0 28207 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3or 1072 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3353 df-sbc 3588 df-csb 3683 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-nul 4064 df-if 4226 df-pw 4299 df-sn 4317 df-pr 4319 df-op 4323 df-uni 4575 df-iun 4656 df-br 4787 df-opab 4847 df-mpt 4864 df-id 5157 df-po 5170 df-so 5171 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-iota 5994 df-fun 6033 df-fn 6034 df-f 6035 df-f1 6036 df-fo 6037 df-f1o 6038 df-fv 6039 df-riota 6754 df-ov 6796 df-oprab 6797 df-mpt2 6798 df-er 7896 df-en 8110 df-dom 8111 df-sdom 8112 df-pnf 10278 df-mnf 10279 df-xr 10280 df-ltxr 10281 df-le 10282 df-sub 10470 df-neg 10471 df-div 10887 df-hvsub 28168 |
This theorem is referenced by: hvsubcan 28271 hvsubcan2 28272 |
Copyright terms: Public domain | W3C validator |