![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > hvmapvalvalN | Structured version Visualization version GIF version |
Description: Value of value of map (i.e. functional value) from nonzero vectors to nonzero functionals in the closed kernel dual space. (Contributed by NM, 23-Mar-2015.) (New usage is discouraged.) |
Ref | Expression |
---|---|
hvmapval.h | ⊢ 𝐻 = (LHyp‘𝐾) |
hvmapval.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
hvmapval.o | ⊢ 𝑂 = ((ocH‘𝐾)‘𝑊) |
hvmapval.v | ⊢ 𝑉 = (Base‘𝑈) |
hvmapval.p | ⊢ + = (+g‘𝑈) |
hvmapval.t | ⊢ · = ( ·𝑠 ‘𝑈) |
hvmapval.z | ⊢ 0 = (0g‘𝑈) |
hvmapval.s | ⊢ 𝑆 = (Scalar‘𝑈) |
hvmapval.r | ⊢ 𝑅 = (Base‘𝑆) |
hvmapval.m | ⊢ 𝑀 = ((HVMap‘𝐾)‘𝑊) |
hvmapval.k | ⊢ (𝜑 → (𝐾 ∈ 𝐴 ∧ 𝑊 ∈ 𝐻)) |
hvmapval.x | ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) |
hvmapval.y | ⊢ (𝜑 → 𝑌 ∈ 𝑉) |
Ref | Expression |
---|---|
hvmapvalvalN | ⊢ (𝜑 → ((𝑀‘𝑋)‘𝑌) = (℩𝑗 ∈ 𝑅 ∃𝑡 ∈ (𝑂‘{𝑋})𝑌 = (𝑡 + (𝑗 · 𝑋)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hvmapval.h | . . . 4 ⊢ 𝐻 = (LHyp‘𝐾) | |
2 | hvmapval.u | . . . 4 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
3 | hvmapval.o | . . . 4 ⊢ 𝑂 = ((ocH‘𝐾)‘𝑊) | |
4 | hvmapval.v | . . . 4 ⊢ 𝑉 = (Base‘𝑈) | |
5 | hvmapval.p | . . . 4 ⊢ + = (+g‘𝑈) | |
6 | hvmapval.t | . . . 4 ⊢ · = ( ·𝑠 ‘𝑈) | |
7 | hvmapval.z | . . . 4 ⊢ 0 = (0g‘𝑈) | |
8 | hvmapval.s | . . . 4 ⊢ 𝑆 = (Scalar‘𝑈) | |
9 | hvmapval.r | . . . 4 ⊢ 𝑅 = (Base‘𝑆) | |
10 | hvmapval.m | . . . 4 ⊢ 𝑀 = ((HVMap‘𝐾)‘𝑊) | |
11 | hvmapval.k | . . . 4 ⊢ (𝜑 → (𝐾 ∈ 𝐴 ∧ 𝑊 ∈ 𝐻)) | |
12 | hvmapval.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) | |
13 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 | hvmapval 37366 | . . 3 ⊢ (𝜑 → (𝑀‘𝑋) = (𝑦 ∈ 𝑉 ↦ (℩𝑗 ∈ 𝑅 ∃𝑡 ∈ (𝑂‘{𝑋})𝑦 = (𝑡 + (𝑗 · 𝑋))))) |
14 | 13 | fveq1d 6231 | . 2 ⊢ (𝜑 → ((𝑀‘𝑋)‘𝑌) = ((𝑦 ∈ 𝑉 ↦ (℩𝑗 ∈ 𝑅 ∃𝑡 ∈ (𝑂‘{𝑋})𝑦 = (𝑡 + (𝑗 · 𝑋))))‘𝑌)) |
15 | hvmapval.y | . . 3 ⊢ (𝜑 → 𝑌 ∈ 𝑉) | |
16 | riotaex 6655 | . . 3 ⊢ (℩𝑗 ∈ 𝑅 ∃𝑡 ∈ (𝑂‘{𝑋})𝑌 = (𝑡 + (𝑗 · 𝑋))) ∈ V | |
17 | eqeq1 2655 | . . . . . 6 ⊢ (𝑦 = 𝑌 → (𝑦 = (𝑡 + (𝑗 · 𝑋)) ↔ 𝑌 = (𝑡 + (𝑗 · 𝑋)))) | |
18 | 17 | rexbidv 3081 | . . . . 5 ⊢ (𝑦 = 𝑌 → (∃𝑡 ∈ (𝑂‘{𝑋})𝑦 = (𝑡 + (𝑗 · 𝑋)) ↔ ∃𝑡 ∈ (𝑂‘{𝑋})𝑌 = (𝑡 + (𝑗 · 𝑋)))) |
19 | 18 | riotabidv 6653 | . . . 4 ⊢ (𝑦 = 𝑌 → (℩𝑗 ∈ 𝑅 ∃𝑡 ∈ (𝑂‘{𝑋})𝑦 = (𝑡 + (𝑗 · 𝑋))) = (℩𝑗 ∈ 𝑅 ∃𝑡 ∈ (𝑂‘{𝑋})𝑌 = (𝑡 + (𝑗 · 𝑋)))) |
20 | eqid 2651 | . . . 4 ⊢ (𝑦 ∈ 𝑉 ↦ (℩𝑗 ∈ 𝑅 ∃𝑡 ∈ (𝑂‘{𝑋})𝑦 = (𝑡 + (𝑗 · 𝑋)))) = (𝑦 ∈ 𝑉 ↦ (℩𝑗 ∈ 𝑅 ∃𝑡 ∈ (𝑂‘{𝑋})𝑦 = (𝑡 + (𝑗 · 𝑋)))) | |
21 | 19, 20 | fvmptg 6319 | . . 3 ⊢ ((𝑌 ∈ 𝑉 ∧ (℩𝑗 ∈ 𝑅 ∃𝑡 ∈ (𝑂‘{𝑋})𝑌 = (𝑡 + (𝑗 · 𝑋))) ∈ V) → ((𝑦 ∈ 𝑉 ↦ (℩𝑗 ∈ 𝑅 ∃𝑡 ∈ (𝑂‘{𝑋})𝑦 = (𝑡 + (𝑗 · 𝑋))))‘𝑌) = (℩𝑗 ∈ 𝑅 ∃𝑡 ∈ (𝑂‘{𝑋})𝑌 = (𝑡 + (𝑗 · 𝑋)))) |
22 | 15, 16, 21 | sylancl 695 | . 2 ⊢ (𝜑 → ((𝑦 ∈ 𝑉 ↦ (℩𝑗 ∈ 𝑅 ∃𝑡 ∈ (𝑂‘{𝑋})𝑦 = (𝑡 + (𝑗 · 𝑋))))‘𝑌) = (℩𝑗 ∈ 𝑅 ∃𝑡 ∈ (𝑂‘{𝑋})𝑌 = (𝑡 + (𝑗 · 𝑋)))) |
23 | 14, 22 | eqtrd 2685 | 1 ⊢ (𝜑 → ((𝑀‘𝑋)‘𝑌) = (℩𝑗 ∈ 𝑅 ∃𝑡 ∈ (𝑂‘{𝑋})𝑌 = (𝑡 + (𝑗 · 𝑋)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1523 ∈ wcel 2030 ∃wrex 2942 Vcvv 3231 ∖ cdif 3604 {csn 4210 ↦ cmpt 4762 ‘cfv 5926 ℩crio 6650 (class class class)co 6690 Basecbs 15904 +gcplusg 15988 Scalarcsca 15991 ·𝑠 cvsca 15992 0gc0g 16147 LHypclh 35588 DVecHcdvh 36684 ocHcoch 36953 HVMapchvm 37362 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-rep 4804 ax-sep 4814 ax-nul 4822 ax-pr 4936 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-ral 2946 df-rex 2947 df-reu 2948 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-nul 3949 df-if 4120 df-sn 4211 df-pr 4213 df-op 4217 df-uni 4469 df-iun 4554 df-br 4686 df-opab 4746 df-mpt 4763 df-id 5053 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-fv 5934 df-riota 6651 df-ov 6693 df-hvmap 37363 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |