![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > hvaddid2 | Structured version Visualization version GIF version |
Description: Addition with the zero vector. (Contributed by NM, 18-Oct-1999.) (New usage is discouraged.) |
Ref | Expression |
---|---|
hvaddid2 | ⊢ (𝐴 ∈ ℋ → (0ℎ +ℎ 𝐴) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-hv0cl 28200 | . . 3 ⊢ 0ℎ ∈ ℋ | |
2 | ax-hvcom 28198 | . . 3 ⊢ ((𝐴 ∈ ℋ ∧ 0ℎ ∈ ℋ) → (𝐴 +ℎ 0ℎ) = (0ℎ +ℎ 𝐴)) | |
3 | 1, 2 | mpan2 671 | . 2 ⊢ (𝐴 ∈ ℋ → (𝐴 +ℎ 0ℎ) = (0ℎ +ℎ 𝐴)) |
4 | ax-hvaddid 28201 | . 2 ⊢ (𝐴 ∈ ℋ → (𝐴 +ℎ 0ℎ) = 𝐴) | |
5 | 3, 4 | eqtr3d 2807 | 1 ⊢ (𝐴 ∈ ℋ → (0ℎ +ℎ 𝐴) = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1631 ∈ wcel 2145 (class class class)co 6793 ℋchil 28116 +ℎ cva 28117 0ℎc0v 28121 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-9 2154 ax-ext 2751 ax-hvcom 28198 ax-hv0cl 28200 ax-hvaddid 28201 |
This theorem depends on definitions: df-bi 197 df-an 383 df-ex 1853 df-cleq 2764 |
This theorem is referenced by: hv2neg 28225 hvaddid2i 28226 hvaddsub4 28275 hilablo 28357 hilid 28358 shunssi 28567 spanunsni 28778 5oalem2 28854 3oalem2 28862 |
Copyright terms: Public domain | W3C validator |