![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > htpyco1 | Structured version Visualization version GIF version |
Description: Compose a homotopy with a continuous map. (Contributed by Mario Carneiro, 10-Mar-2015.) |
Ref | Expression |
---|---|
htpyco1.n | ⊢ 𝑁 = (𝑥 ∈ 𝑋, 𝑦 ∈ (0[,]1) ↦ ((𝑃‘𝑥)𝐻𝑦)) |
htpyco1.j | ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) |
htpyco1.p | ⊢ (𝜑 → 𝑃 ∈ (𝐽 Cn 𝐾)) |
htpyco1.f | ⊢ (𝜑 → 𝐹 ∈ (𝐾 Cn 𝐿)) |
htpyco1.g | ⊢ (𝜑 → 𝐺 ∈ (𝐾 Cn 𝐿)) |
htpyco1.h | ⊢ (𝜑 → 𝐻 ∈ (𝐹(𝐾 Htpy 𝐿)𝐺)) |
Ref | Expression |
---|---|
htpyco1 | ⊢ (𝜑 → 𝑁 ∈ ((𝐹 ∘ 𝑃)(𝐽 Htpy 𝐿)(𝐺 ∘ 𝑃))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | htpyco1.j | . 2 ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) | |
2 | htpyco1.p | . . 3 ⊢ (𝜑 → 𝑃 ∈ (𝐽 Cn 𝐾)) | |
3 | htpyco1.f | . . 3 ⊢ (𝜑 → 𝐹 ∈ (𝐾 Cn 𝐿)) | |
4 | cnco 21291 | . . 3 ⊢ ((𝑃 ∈ (𝐽 Cn 𝐾) ∧ 𝐹 ∈ (𝐾 Cn 𝐿)) → (𝐹 ∘ 𝑃) ∈ (𝐽 Cn 𝐿)) | |
5 | 2, 3, 4 | syl2anc 573 | . 2 ⊢ (𝜑 → (𝐹 ∘ 𝑃) ∈ (𝐽 Cn 𝐿)) |
6 | htpyco1.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ (𝐾 Cn 𝐿)) | |
7 | cnco 21291 | . . 3 ⊢ ((𝑃 ∈ (𝐽 Cn 𝐾) ∧ 𝐺 ∈ (𝐾 Cn 𝐿)) → (𝐺 ∘ 𝑃) ∈ (𝐽 Cn 𝐿)) | |
8 | 2, 6, 7 | syl2anc 573 | . 2 ⊢ (𝜑 → (𝐺 ∘ 𝑃) ∈ (𝐽 Cn 𝐿)) |
9 | htpyco1.n | . . 3 ⊢ 𝑁 = (𝑥 ∈ 𝑋, 𝑦 ∈ (0[,]1) ↦ ((𝑃‘𝑥)𝐻𝑦)) | |
10 | iitopon 22902 | . . . . 5 ⊢ II ∈ (TopOn‘(0[,]1)) | |
11 | 10 | a1i 11 | . . . 4 ⊢ (𝜑 → II ∈ (TopOn‘(0[,]1))) |
12 | 1, 11 | cnmpt1st 21692 | . . . . 5 ⊢ (𝜑 → (𝑥 ∈ 𝑋, 𝑦 ∈ (0[,]1) ↦ 𝑥) ∈ ((𝐽 ×t II) Cn 𝐽)) |
13 | 1, 11, 12, 2 | cnmpt21f 21696 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ 𝑋, 𝑦 ∈ (0[,]1) ↦ (𝑃‘𝑥)) ∈ ((𝐽 ×t II) Cn 𝐾)) |
14 | 1, 11 | cnmpt2nd 21693 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ 𝑋, 𝑦 ∈ (0[,]1) ↦ 𝑦) ∈ ((𝐽 ×t II) Cn II)) |
15 | cntop2 21266 | . . . . . . . 8 ⊢ (𝑃 ∈ (𝐽 Cn 𝐾) → 𝐾 ∈ Top) | |
16 | 2, 15 | syl 17 | . . . . . . 7 ⊢ (𝜑 → 𝐾 ∈ Top) |
17 | eqid 2771 | . . . . . . . 8 ⊢ ∪ 𝐾 = ∪ 𝐾 | |
18 | 17 | toptopon 20942 | . . . . . . 7 ⊢ (𝐾 ∈ Top ↔ 𝐾 ∈ (TopOn‘∪ 𝐾)) |
19 | 16, 18 | sylib 208 | . . . . . 6 ⊢ (𝜑 → 𝐾 ∈ (TopOn‘∪ 𝐾)) |
20 | 19, 3, 6 | htpycn 22992 | . . . . 5 ⊢ (𝜑 → (𝐹(𝐾 Htpy 𝐿)𝐺) ⊆ ((𝐾 ×t II) Cn 𝐿)) |
21 | htpyco1.h | . . . . 5 ⊢ (𝜑 → 𝐻 ∈ (𝐹(𝐾 Htpy 𝐿)𝐺)) | |
22 | 20, 21 | sseldd 3753 | . . . 4 ⊢ (𝜑 → 𝐻 ∈ ((𝐾 ×t II) Cn 𝐿)) |
23 | 1, 11, 13, 14, 22 | cnmpt22f 21699 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝑋, 𝑦 ∈ (0[,]1) ↦ ((𝑃‘𝑥)𝐻𝑦)) ∈ ((𝐽 ×t II) Cn 𝐿)) |
24 | 9, 23 | syl5eqel 2854 | . 2 ⊢ (𝜑 → 𝑁 ∈ ((𝐽 ×t II) Cn 𝐿)) |
25 | cnf2 21274 | . . . . . . 7 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘∪ 𝐾) ∧ 𝑃 ∈ (𝐽 Cn 𝐾)) → 𝑃:𝑋⟶∪ 𝐾) | |
26 | 1, 19, 2, 25 | syl3anc 1476 | . . . . . 6 ⊢ (𝜑 → 𝑃:𝑋⟶∪ 𝐾) |
27 | 26 | ffvelrnda 6504 | . . . . 5 ⊢ ((𝜑 ∧ 𝑠 ∈ 𝑋) → (𝑃‘𝑠) ∈ ∪ 𝐾) |
28 | 19, 3, 6, 21 | htpyi 22993 | . . . . 5 ⊢ ((𝜑 ∧ (𝑃‘𝑠) ∈ ∪ 𝐾) → (((𝑃‘𝑠)𝐻0) = (𝐹‘(𝑃‘𝑠)) ∧ ((𝑃‘𝑠)𝐻1) = (𝐺‘(𝑃‘𝑠)))) |
29 | 27, 28 | syldan 579 | . . . 4 ⊢ ((𝜑 ∧ 𝑠 ∈ 𝑋) → (((𝑃‘𝑠)𝐻0) = (𝐹‘(𝑃‘𝑠)) ∧ ((𝑃‘𝑠)𝐻1) = (𝐺‘(𝑃‘𝑠)))) |
30 | 29 | simpld 482 | . . 3 ⊢ ((𝜑 ∧ 𝑠 ∈ 𝑋) → ((𝑃‘𝑠)𝐻0) = (𝐹‘(𝑃‘𝑠))) |
31 | simpr 471 | . . . 4 ⊢ ((𝜑 ∧ 𝑠 ∈ 𝑋) → 𝑠 ∈ 𝑋) | |
32 | 0elunit 12497 | . . . 4 ⊢ 0 ∈ (0[,]1) | |
33 | fveq2 6333 | . . . . . 6 ⊢ (𝑥 = 𝑠 → (𝑃‘𝑥) = (𝑃‘𝑠)) | |
34 | id 22 | . . . . . 6 ⊢ (𝑦 = 0 → 𝑦 = 0) | |
35 | 33, 34 | oveqan12d 6815 | . . . . 5 ⊢ ((𝑥 = 𝑠 ∧ 𝑦 = 0) → ((𝑃‘𝑥)𝐻𝑦) = ((𝑃‘𝑠)𝐻0)) |
36 | ovex 6827 | . . . . 5 ⊢ ((𝑃‘𝑠)𝐻0) ∈ V | |
37 | 35, 9, 36 | ovmpt2a 6942 | . . . 4 ⊢ ((𝑠 ∈ 𝑋 ∧ 0 ∈ (0[,]1)) → (𝑠𝑁0) = ((𝑃‘𝑠)𝐻0)) |
38 | 31, 32, 37 | sylancl 574 | . . 3 ⊢ ((𝜑 ∧ 𝑠 ∈ 𝑋) → (𝑠𝑁0) = ((𝑃‘𝑠)𝐻0)) |
39 | fvco3 6419 | . . . 4 ⊢ ((𝑃:𝑋⟶∪ 𝐾 ∧ 𝑠 ∈ 𝑋) → ((𝐹 ∘ 𝑃)‘𝑠) = (𝐹‘(𝑃‘𝑠))) | |
40 | 26, 39 | sylan 569 | . . 3 ⊢ ((𝜑 ∧ 𝑠 ∈ 𝑋) → ((𝐹 ∘ 𝑃)‘𝑠) = (𝐹‘(𝑃‘𝑠))) |
41 | 30, 38, 40 | 3eqtr4d 2815 | . 2 ⊢ ((𝜑 ∧ 𝑠 ∈ 𝑋) → (𝑠𝑁0) = ((𝐹 ∘ 𝑃)‘𝑠)) |
42 | 29 | simprd 483 | . . 3 ⊢ ((𝜑 ∧ 𝑠 ∈ 𝑋) → ((𝑃‘𝑠)𝐻1) = (𝐺‘(𝑃‘𝑠))) |
43 | 1elunit 12498 | . . . 4 ⊢ 1 ∈ (0[,]1) | |
44 | id 22 | . . . . . 6 ⊢ (𝑦 = 1 → 𝑦 = 1) | |
45 | 33, 44 | oveqan12d 6815 | . . . . 5 ⊢ ((𝑥 = 𝑠 ∧ 𝑦 = 1) → ((𝑃‘𝑥)𝐻𝑦) = ((𝑃‘𝑠)𝐻1)) |
46 | ovex 6827 | . . . . 5 ⊢ ((𝑃‘𝑠)𝐻1) ∈ V | |
47 | 45, 9, 46 | ovmpt2a 6942 | . . . 4 ⊢ ((𝑠 ∈ 𝑋 ∧ 1 ∈ (0[,]1)) → (𝑠𝑁1) = ((𝑃‘𝑠)𝐻1)) |
48 | 31, 43, 47 | sylancl 574 | . . 3 ⊢ ((𝜑 ∧ 𝑠 ∈ 𝑋) → (𝑠𝑁1) = ((𝑃‘𝑠)𝐻1)) |
49 | fvco3 6419 | . . . 4 ⊢ ((𝑃:𝑋⟶∪ 𝐾 ∧ 𝑠 ∈ 𝑋) → ((𝐺 ∘ 𝑃)‘𝑠) = (𝐺‘(𝑃‘𝑠))) | |
50 | 26, 49 | sylan 569 | . . 3 ⊢ ((𝜑 ∧ 𝑠 ∈ 𝑋) → ((𝐺 ∘ 𝑃)‘𝑠) = (𝐺‘(𝑃‘𝑠))) |
51 | 42, 48, 50 | 3eqtr4d 2815 | . 2 ⊢ ((𝜑 ∧ 𝑠 ∈ 𝑋) → (𝑠𝑁1) = ((𝐺 ∘ 𝑃)‘𝑠)) |
52 | 1, 5, 8, 24, 41, 51 | ishtpyd 22994 | 1 ⊢ (𝜑 → 𝑁 ∈ ((𝐹 ∘ 𝑃)(𝐽 Htpy 𝐿)(𝐺 ∘ 𝑃))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 382 = wceq 1631 ∈ wcel 2145 ∪ cuni 4575 ∘ ccom 5254 ⟶wf 6026 ‘cfv 6030 (class class class)co 6796 ↦ cmpt2 6798 0cc0 10142 1c1 10143 [,]cicc 12383 Topctop 20918 TopOnctopon 20935 Cn ccn 21249 ×t ctx 21584 IIcii 22898 Htpy chtpy 22986 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-sep 4916 ax-nul 4924 ax-pow 4975 ax-pr 5035 ax-un 7100 ax-cnex 10198 ax-resscn 10199 ax-1cn 10200 ax-icn 10201 ax-addcl 10202 ax-addrcl 10203 ax-mulcl 10204 ax-mulrcl 10205 ax-mulcom 10206 ax-addass 10207 ax-mulass 10208 ax-distr 10209 ax-i2m1 10210 ax-1ne0 10211 ax-1rid 10212 ax-rnegex 10213 ax-rrecex 10214 ax-cnre 10215 ax-pre-lttri 10216 ax-pre-lttrn 10217 ax-pre-ltadd 10218 ax-pre-mulgt0 10219 ax-pre-sup 10220 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3or 1072 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3353 df-sbc 3588 df-csb 3683 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-pss 3739 df-nul 4064 df-if 4227 df-pw 4300 df-sn 4318 df-pr 4320 df-tp 4322 df-op 4324 df-uni 4576 df-iun 4657 df-br 4788 df-opab 4848 df-mpt 4865 df-tr 4888 df-id 5158 df-eprel 5163 df-po 5171 df-so 5172 df-fr 5209 df-we 5211 df-xp 5256 df-rel 5257 df-cnv 5258 df-co 5259 df-dm 5260 df-rn 5261 df-res 5262 df-ima 5263 df-pred 5822 df-ord 5868 df-on 5869 df-lim 5870 df-suc 5871 df-iota 5993 df-fun 6032 df-fn 6033 df-f 6034 df-f1 6035 df-fo 6036 df-f1o 6037 df-fv 6038 df-riota 6757 df-ov 6799 df-oprab 6800 df-mpt2 6801 df-om 7217 df-1st 7319 df-2nd 7320 df-wrecs 7563 df-recs 7625 df-rdg 7663 df-er 7900 df-map 8015 df-en 8114 df-dom 8115 df-sdom 8116 df-sup 8508 df-inf 8509 df-pnf 10282 df-mnf 10283 df-xr 10284 df-ltxr 10285 df-le 10286 df-sub 10474 df-neg 10475 df-div 10891 df-nn 11227 df-2 11285 df-3 11286 df-n0 11500 df-z 11585 df-uz 11894 df-q 11997 df-rp 12036 df-xneg 12151 df-xadd 12152 df-xmul 12153 df-icc 12387 df-seq 13009 df-exp 13068 df-cj 14047 df-re 14048 df-im 14049 df-sqrt 14183 df-abs 14184 df-topgen 16312 df-psmet 19953 df-xmet 19954 df-met 19955 df-bl 19956 df-mopn 19957 df-top 20919 df-topon 20936 df-bases 20971 df-cn 21252 df-tx 21586 df-ii 22900 df-htpy 22989 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |