MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  htpycc Structured version   Visualization version   GIF version

Theorem htpycc 22826
Description: Concatenate two homotopies. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 23-Feb-2015.)
Hypotheses
Ref Expression
htpycc.1 𝑁 = (𝑥𝑋, 𝑦 ∈ (0[,]1) ↦ if(𝑦 ≤ (1 / 2), (𝑥𝐿(2 · 𝑦)), (𝑥𝑀((2 · 𝑦) − 1))))
htpycc.2 (𝜑𝐽 ∈ (TopOn‘𝑋))
htpycc.4 (𝜑𝐹 ∈ (𝐽 Cn 𝐾))
htpycc.5 (𝜑𝐺 ∈ (𝐽 Cn 𝐾))
htpycc.6 (𝜑𝐻 ∈ (𝐽 Cn 𝐾))
htpycc.7 (𝜑𝐿 ∈ (𝐹(𝐽 Htpy 𝐾)𝐺))
htpycc.8 (𝜑𝑀 ∈ (𝐺(𝐽 Htpy 𝐾)𝐻))
Assertion
Ref Expression
htpycc (𝜑𝑁 ∈ (𝐹(𝐽 Htpy 𝐾)𝐻))
Distinct variable groups:   𝑥,𝑦,𝐽   𝑥,𝐾,𝑦   𝑥,𝐿,𝑦   𝑥,𝑀,𝑦   𝑥,𝑋,𝑦   𝜑,𝑥,𝑦
Allowed substitution hints:   𝐹(𝑥,𝑦)   𝐺(𝑥,𝑦)   𝐻(𝑥,𝑦)   𝑁(𝑥,𝑦)

Proof of Theorem htpycc
Dummy variables 𝑠 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 htpycc.2 . 2 (𝜑𝐽 ∈ (TopOn‘𝑋))
2 htpycc.4 . 2 (𝜑𝐹 ∈ (𝐽 Cn 𝐾))
3 htpycc.6 . 2 (𝜑𝐻 ∈ (𝐽 Cn 𝐾))
4 htpycc.1 . . 3 𝑁 = (𝑥𝑋, 𝑦 ∈ (0[,]1) ↦ if(𝑦 ≤ (1 / 2), (𝑥𝐿(2 · 𝑦)), (𝑥𝑀((2 · 𝑦) − 1))))
5 iitopon 22729 . . . . 5 II ∈ (TopOn‘(0[,]1))
65a1i 11 . . . 4 (𝜑 → II ∈ (TopOn‘(0[,]1)))
7 eqid 2651 . . . . 5 (topGen‘ran (,)) = (topGen‘ran (,))
8 eqid 2651 . . . . 5 ((topGen‘ran (,)) ↾t (0[,](1 / 2))) = ((topGen‘ran (,)) ↾t (0[,](1 / 2)))
9 eqid 2651 . . . . 5 ((topGen‘ran (,)) ↾t ((1 / 2)[,]1)) = ((topGen‘ran (,)) ↾t ((1 / 2)[,]1))
10 dfii2 22732 . . . . 5 II = ((topGen‘ran (,)) ↾t (0[,]1))
11 0red 10079 . . . . 5 (𝜑 → 0 ∈ ℝ)
12 1red 10093 . . . . 5 (𝜑 → 1 ∈ ℝ)
13 halfre 11284 . . . . . . 7 (1 / 2) ∈ ℝ
14 0re 10078 . . . . . . . 8 0 ∈ ℝ
15 halfgt0 11286 . . . . . . . 8 0 < (1 / 2)
1614, 13, 15ltleii 10198 . . . . . . 7 0 ≤ (1 / 2)
17 1re 10077 . . . . . . . 8 1 ∈ ℝ
18 halflt1 11288 . . . . . . . 8 (1 / 2) < 1
1913, 17, 18ltleii 10198 . . . . . . 7 (1 / 2) ≤ 1
2014, 17elicc2i 12277 . . . . . . 7 ((1 / 2) ∈ (0[,]1) ↔ ((1 / 2) ∈ ℝ ∧ 0 ≤ (1 / 2) ∧ (1 / 2) ≤ 1))
2113, 16, 19, 20mpbir3an 1263 . . . . . 6 (1 / 2) ∈ (0[,]1)
2221a1i 11 . . . . 5 (𝜑 → (1 / 2) ∈ (0[,]1))
23 htpycc.5 . . . . . . . . . . . 12 (𝜑𝐺 ∈ (𝐽 Cn 𝐾))
24 htpycc.7 . . . . . . . . . . . 12 (𝜑𝐿 ∈ (𝐹(𝐽 Htpy 𝐾)𝐺))
251, 2, 23, 24htpyi 22820 . . . . . . . . . . 11 ((𝜑𝑠𝑋) → ((𝑠𝐿0) = (𝐹𝑠) ∧ (𝑠𝐿1) = (𝐺𝑠)))
2625simprd 478 . . . . . . . . . 10 ((𝜑𝑠𝑋) → (𝑠𝐿1) = (𝐺𝑠))
27 htpycc.8 . . . . . . . . . . . 12 (𝜑𝑀 ∈ (𝐺(𝐽 Htpy 𝐾)𝐻))
281, 23, 3, 27htpyi 22820 . . . . . . . . . . 11 ((𝜑𝑠𝑋) → ((𝑠𝑀0) = (𝐺𝑠) ∧ (𝑠𝑀1) = (𝐻𝑠)))
2928simpld 474 . . . . . . . . . 10 ((𝜑𝑠𝑋) → (𝑠𝑀0) = (𝐺𝑠))
3026, 29eqtr4d 2688 . . . . . . . . 9 ((𝜑𝑠𝑋) → (𝑠𝐿1) = (𝑠𝑀0))
3130ralrimiva 2995 . . . . . . . 8 (𝜑 → ∀𝑠𝑋 (𝑠𝐿1) = (𝑠𝑀0))
32 oveq1 6697 . . . . . . . . . 10 (𝑠 = 𝑥 → (𝑠𝐿1) = (𝑥𝐿1))
33 oveq1 6697 . . . . . . . . . 10 (𝑠 = 𝑥 → (𝑠𝑀0) = (𝑥𝑀0))
3432, 33eqeq12d 2666 . . . . . . . . 9 (𝑠 = 𝑥 → ((𝑠𝐿1) = (𝑠𝑀0) ↔ (𝑥𝐿1) = (𝑥𝑀0)))
3534rspccva 3339 . . . . . . . 8 ((∀𝑠𝑋 (𝑠𝐿1) = (𝑠𝑀0) ∧ 𝑥𝑋) → (𝑥𝐿1) = (𝑥𝑀0))
3631, 35sylan 487 . . . . . . 7 ((𝜑𝑥𝑋) → (𝑥𝐿1) = (𝑥𝑀0))
3736adantrl 752 . . . . . 6 ((𝜑 ∧ (𝑦 = (1 / 2) ∧ 𝑥𝑋)) → (𝑥𝐿1) = (𝑥𝑀0))
38 simprl 809 . . . . . . . . 9 ((𝜑 ∧ (𝑦 = (1 / 2) ∧ 𝑥𝑋)) → 𝑦 = (1 / 2))
3938oveq2d 6706 . . . . . . . 8 ((𝜑 ∧ (𝑦 = (1 / 2) ∧ 𝑥𝑋)) → (2 · 𝑦) = (2 · (1 / 2)))
40 2cn 11129 . . . . . . . . 9 2 ∈ ℂ
41 2ne0 11151 . . . . . . . . 9 2 ≠ 0
4240, 41recidi 10794 . . . . . . . 8 (2 · (1 / 2)) = 1
4339, 42syl6eq 2701 . . . . . . 7 ((𝜑 ∧ (𝑦 = (1 / 2) ∧ 𝑥𝑋)) → (2 · 𝑦) = 1)
4443oveq2d 6706 . . . . . 6 ((𝜑 ∧ (𝑦 = (1 / 2) ∧ 𝑥𝑋)) → (𝑥𝐿(2 · 𝑦)) = (𝑥𝐿1))
4543oveq1d 6705 . . . . . . . 8 ((𝜑 ∧ (𝑦 = (1 / 2) ∧ 𝑥𝑋)) → ((2 · 𝑦) − 1) = (1 − 1))
46 1m1e0 11127 . . . . . . . 8 (1 − 1) = 0
4745, 46syl6eq 2701 . . . . . . 7 ((𝜑 ∧ (𝑦 = (1 / 2) ∧ 𝑥𝑋)) → ((2 · 𝑦) − 1) = 0)
4847oveq2d 6706 . . . . . 6 ((𝜑 ∧ (𝑦 = (1 / 2) ∧ 𝑥𝑋)) → (𝑥𝑀((2 · 𝑦) − 1)) = (𝑥𝑀0))
4937, 44, 483eqtr4d 2695 . . . . 5 ((𝜑 ∧ (𝑦 = (1 / 2) ∧ 𝑥𝑋)) → (𝑥𝐿(2 · 𝑦)) = (𝑥𝑀((2 · 𝑦) − 1)))
50 retopon 22614 . . . . . . . 8 (topGen‘ran (,)) ∈ (TopOn‘ℝ)
51 iccssre 12293 . . . . . . . . 9 ((0 ∈ ℝ ∧ (1 / 2) ∈ ℝ) → (0[,](1 / 2)) ⊆ ℝ)
5214, 13, 51mp2an 708 . . . . . . . 8 (0[,](1 / 2)) ⊆ ℝ
53 resttopon 21013 . . . . . . . 8 (((topGen‘ran (,)) ∈ (TopOn‘ℝ) ∧ (0[,](1 / 2)) ⊆ ℝ) → ((topGen‘ran (,)) ↾t (0[,](1 / 2))) ∈ (TopOn‘(0[,](1 / 2))))
5450, 52, 53mp2an 708 . . . . . . 7 ((topGen‘ran (,)) ↾t (0[,](1 / 2))) ∈ (TopOn‘(0[,](1 / 2)))
5554a1i 11 . . . . . 6 (𝜑 → ((topGen‘ran (,)) ↾t (0[,](1 / 2))) ∈ (TopOn‘(0[,](1 / 2))))
5655, 1cnmpt2nd 21520 . . . . . 6 (𝜑 → (𝑦 ∈ (0[,](1 / 2)), 𝑥𝑋𝑥) ∈ ((((topGen‘ran (,)) ↾t (0[,](1 / 2))) ×t 𝐽) Cn 𝐽))
5755, 1cnmpt1st 21519 . . . . . . 7 (𝜑 → (𝑦 ∈ (0[,](1 / 2)), 𝑥𝑋𝑦) ∈ ((((topGen‘ran (,)) ↾t (0[,](1 / 2))) ×t 𝐽) Cn ((topGen‘ran (,)) ↾t (0[,](1 / 2)))))
588iihalf1cn 22778 . . . . . . . 8 (𝑧 ∈ (0[,](1 / 2)) ↦ (2 · 𝑧)) ∈ (((topGen‘ran (,)) ↾t (0[,](1 / 2))) Cn II)
5958a1i 11 . . . . . . 7 (𝜑 → (𝑧 ∈ (0[,](1 / 2)) ↦ (2 · 𝑧)) ∈ (((topGen‘ran (,)) ↾t (0[,](1 / 2))) Cn II))
60 oveq2 6698 . . . . . . 7 (𝑧 = 𝑦 → (2 · 𝑧) = (2 · 𝑦))
6155, 1, 57, 55, 59, 60cnmpt21 21522 . . . . . 6 (𝜑 → (𝑦 ∈ (0[,](1 / 2)), 𝑥𝑋 ↦ (2 · 𝑦)) ∈ ((((topGen‘ran (,)) ↾t (0[,](1 / 2))) ×t 𝐽) Cn II))
621, 2, 23htpycn 22819 . . . . . . 7 (𝜑 → (𝐹(𝐽 Htpy 𝐾)𝐺) ⊆ ((𝐽 ×t II) Cn 𝐾))
6362, 24sseldd 3637 . . . . . 6 (𝜑𝐿 ∈ ((𝐽 ×t II) Cn 𝐾))
6455, 1, 56, 61, 63cnmpt22f 21526 . . . . 5 (𝜑 → (𝑦 ∈ (0[,](1 / 2)), 𝑥𝑋 ↦ (𝑥𝐿(2 · 𝑦))) ∈ ((((topGen‘ran (,)) ↾t (0[,](1 / 2))) ×t 𝐽) Cn 𝐾))
65 iccssre 12293 . . . . . . . . 9 (((1 / 2) ∈ ℝ ∧ 1 ∈ ℝ) → ((1 / 2)[,]1) ⊆ ℝ)
6613, 17, 65mp2an 708 . . . . . . . 8 ((1 / 2)[,]1) ⊆ ℝ
67 resttopon 21013 . . . . . . . 8 (((topGen‘ran (,)) ∈ (TopOn‘ℝ) ∧ ((1 / 2)[,]1) ⊆ ℝ) → ((topGen‘ran (,)) ↾t ((1 / 2)[,]1)) ∈ (TopOn‘((1 / 2)[,]1)))
6850, 66, 67mp2an 708 . . . . . . 7 ((topGen‘ran (,)) ↾t ((1 / 2)[,]1)) ∈ (TopOn‘((1 / 2)[,]1))
6968a1i 11 . . . . . 6 (𝜑 → ((topGen‘ran (,)) ↾t ((1 / 2)[,]1)) ∈ (TopOn‘((1 / 2)[,]1)))
7069, 1cnmpt2nd 21520 . . . . . 6 (𝜑 → (𝑦 ∈ ((1 / 2)[,]1), 𝑥𝑋𝑥) ∈ ((((topGen‘ran (,)) ↾t ((1 / 2)[,]1)) ×t 𝐽) Cn 𝐽))
7169, 1cnmpt1st 21519 . . . . . . 7 (𝜑 → (𝑦 ∈ ((1 / 2)[,]1), 𝑥𝑋𝑦) ∈ ((((topGen‘ran (,)) ↾t ((1 / 2)[,]1)) ×t 𝐽) Cn ((topGen‘ran (,)) ↾t ((1 / 2)[,]1))))
729iihalf2cn 22780 . . . . . . . 8 (𝑧 ∈ ((1 / 2)[,]1) ↦ ((2 · 𝑧) − 1)) ∈ (((topGen‘ran (,)) ↾t ((1 / 2)[,]1)) Cn II)
7372a1i 11 . . . . . . 7 (𝜑 → (𝑧 ∈ ((1 / 2)[,]1) ↦ ((2 · 𝑧) − 1)) ∈ (((topGen‘ran (,)) ↾t ((1 / 2)[,]1)) Cn II))
7460oveq1d 6705 . . . . . . 7 (𝑧 = 𝑦 → ((2 · 𝑧) − 1) = ((2 · 𝑦) − 1))
7569, 1, 71, 69, 73, 74cnmpt21 21522 . . . . . 6 (𝜑 → (𝑦 ∈ ((1 / 2)[,]1), 𝑥𝑋 ↦ ((2 · 𝑦) − 1)) ∈ ((((topGen‘ran (,)) ↾t ((1 / 2)[,]1)) ×t 𝐽) Cn II))
761, 23, 3htpycn 22819 . . . . . . 7 (𝜑 → (𝐺(𝐽 Htpy 𝐾)𝐻) ⊆ ((𝐽 ×t II) Cn 𝐾))
7776, 27sseldd 3637 . . . . . 6 (𝜑𝑀 ∈ ((𝐽 ×t II) Cn 𝐾))
7869, 1, 70, 75, 77cnmpt22f 21526 . . . . 5 (𝜑 → (𝑦 ∈ ((1 / 2)[,]1), 𝑥𝑋 ↦ (𝑥𝑀((2 · 𝑦) − 1))) ∈ ((((topGen‘ran (,)) ↾t ((1 / 2)[,]1)) ×t 𝐽) Cn 𝐾))
797, 8, 9, 10, 11, 12, 22, 1, 49, 64, 78cnmpt2pc 22774 . . . 4 (𝜑 → (𝑦 ∈ (0[,]1), 𝑥𝑋 ↦ if(𝑦 ≤ (1 / 2), (𝑥𝐿(2 · 𝑦)), (𝑥𝑀((2 · 𝑦) − 1)))) ∈ ((II ×t 𝐽) Cn 𝐾))
806, 1, 79cnmptcom 21529 . . 3 (𝜑 → (𝑥𝑋, 𝑦 ∈ (0[,]1) ↦ if(𝑦 ≤ (1 / 2), (𝑥𝐿(2 · 𝑦)), (𝑥𝑀((2 · 𝑦) − 1)))) ∈ ((𝐽 ×t II) Cn 𝐾))
814, 80syl5eqel 2734 . 2 (𝜑𝑁 ∈ ((𝐽 ×t II) Cn 𝐾))
82 simpr 476 . . . 4 ((𝜑𝑠𝑋) → 𝑠𝑋)
83 0elunit 12328 . . . 4 0 ∈ (0[,]1)
84 simpr 476 . . . . . . . 8 ((𝑥 = 𝑠𝑦 = 0) → 𝑦 = 0)
8584, 16syl6eqbr 4724 . . . . . . 7 ((𝑥 = 𝑠𝑦 = 0) → 𝑦 ≤ (1 / 2))
8685iftrued 4127 . . . . . 6 ((𝑥 = 𝑠𝑦 = 0) → if(𝑦 ≤ (1 / 2), (𝑥𝐿(2 · 𝑦)), (𝑥𝑀((2 · 𝑦) − 1))) = (𝑥𝐿(2 · 𝑦)))
87 simpl 472 . . . . . . 7 ((𝑥 = 𝑠𝑦 = 0) → 𝑥 = 𝑠)
8884oveq2d 6706 . . . . . . . 8 ((𝑥 = 𝑠𝑦 = 0) → (2 · 𝑦) = (2 · 0))
89 2t0e0 11221 . . . . . . . 8 (2 · 0) = 0
9088, 89syl6eq 2701 . . . . . . 7 ((𝑥 = 𝑠𝑦 = 0) → (2 · 𝑦) = 0)
9187, 90oveq12d 6708 . . . . . 6 ((𝑥 = 𝑠𝑦 = 0) → (𝑥𝐿(2 · 𝑦)) = (𝑠𝐿0))
9286, 91eqtrd 2685 . . . . 5 ((𝑥 = 𝑠𝑦 = 0) → if(𝑦 ≤ (1 / 2), (𝑥𝐿(2 · 𝑦)), (𝑥𝑀((2 · 𝑦) − 1))) = (𝑠𝐿0))
93 ovex 6718 . . . . 5 (𝑠𝐿0) ∈ V
9492, 4, 93ovmpt2a 6833 . . . 4 ((𝑠𝑋 ∧ 0 ∈ (0[,]1)) → (𝑠𝑁0) = (𝑠𝐿0))
9582, 83, 94sylancl 695 . . 3 ((𝜑𝑠𝑋) → (𝑠𝑁0) = (𝑠𝐿0))
9625simpld 474 . . 3 ((𝜑𝑠𝑋) → (𝑠𝐿0) = (𝐹𝑠))
9795, 96eqtrd 2685 . 2 ((𝜑𝑠𝑋) → (𝑠𝑁0) = (𝐹𝑠))
98 1elunit 12329 . . . 4 1 ∈ (0[,]1)
9913, 17ltnlei 10196 . . . . . . . . 9 ((1 / 2) < 1 ↔ ¬ 1 ≤ (1 / 2))
10018, 99mpbi 220 . . . . . . . 8 ¬ 1 ≤ (1 / 2)
101 simpr 476 . . . . . . . . 9 ((𝑥 = 𝑠𝑦 = 1) → 𝑦 = 1)
102101breq1d 4695 . . . . . . . 8 ((𝑥 = 𝑠𝑦 = 1) → (𝑦 ≤ (1 / 2) ↔ 1 ≤ (1 / 2)))
103100, 102mtbiri 316 . . . . . . 7 ((𝑥 = 𝑠𝑦 = 1) → ¬ 𝑦 ≤ (1 / 2))
104103iffalsed 4130 . . . . . 6 ((𝑥 = 𝑠𝑦 = 1) → if(𝑦 ≤ (1 / 2), (𝑥𝐿(2 · 𝑦)), (𝑥𝑀((2 · 𝑦) − 1))) = (𝑥𝑀((2 · 𝑦) − 1)))
105 simpl 472 . . . . . . 7 ((𝑥 = 𝑠𝑦 = 1) → 𝑥 = 𝑠)
106101oveq2d 6706 . . . . . . . . . 10 ((𝑥 = 𝑠𝑦 = 1) → (2 · 𝑦) = (2 · 1))
107 2t1e2 11214 . . . . . . . . . 10 (2 · 1) = 2
108106, 107syl6eq 2701 . . . . . . . . 9 ((𝑥 = 𝑠𝑦 = 1) → (2 · 𝑦) = 2)
109108oveq1d 6705 . . . . . . . 8 ((𝑥 = 𝑠𝑦 = 1) → ((2 · 𝑦) − 1) = (2 − 1))
110 2m1e1 11173 . . . . . . . 8 (2 − 1) = 1
111109, 110syl6eq 2701 . . . . . . 7 ((𝑥 = 𝑠𝑦 = 1) → ((2 · 𝑦) − 1) = 1)
112105, 111oveq12d 6708 . . . . . 6 ((𝑥 = 𝑠𝑦 = 1) → (𝑥𝑀((2 · 𝑦) − 1)) = (𝑠𝑀1))
113104, 112eqtrd 2685 . . . . 5 ((𝑥 = 𝑠𝑦 = 1) → if(𝑦 ≤ (1 / 2), (𝑥𝐿(2 · 𝑦)), (𝑥𝑀((2 · 𝑦) − 1))) = (𝑠𝑀1))
114 ovex 6718 . . . . 5 (𝑠𝑀1) ∈ V
115113, 4, 114ovmpt2a 6833 . . . 4 ((𝑠𝑋 ∧ 1 ∈ (0[,]1)) → (𝑠𝑁1) = (𝑠𝑀1))
11682, 98, 115sylancl 695 . . 3 ((𝜑𝑠𝑋) → (𝑠𝑁1) = (𝑠𝑀1))
11728simprd 478 . . 3 ((𝜑𝑠𝑋) → (𝑠𝑀1) = (𝐻𝑠))
118116, 117eqtrd 2685 . 2 ((𝜑𝑠𝑋) → (𝑠𝑁1) = (𝐻𝑠))
1191, 2, 3, 81, 97, 118ishtpyd 22821 1 (𝜑𝑁 ∈ (𝐹(𝐽 Htpy 𝐾)𝐻))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 383   = wceq 1523  wcel 2030  wral 2941  wss 3607  ifcif 4119   class class class wbr 4685  cmpt 4762  ran crn 5144  cfv 5926  (class class class)co 6690  cmpt2 6692  cr 9973  0cc0 9974  1c1 9975   · cmul 9979   < clt 10112  cle 10113  cmin 10304   / cdiv 10722  2c2 11108  (,)cioo 12213  [,]cicc 12216  t crest 16128  topGenctg 16145  TopOnctopon 20763   Cn ccn 21076   ×t ctx 21411  IIcii 22725   Htpy chtpy 22813
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-inf2 8576  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051  ax-pre-sup 10052  ax-mulf 10054
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-iin 4555  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-se 5103  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-isom 5935  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-of 6939  df-om 7108  df-1st 7210  df-2nd 7211  df-supp 7341  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-2o 7606  df-oadd 7609  df-er 7787  df-map 7901  df-ixp 7951  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-fsupp 8317  df-fi 8358  df-sup 8389  df-inf 8390  df-oi 8456  df-card 8803  df-cda 9028  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-div 10723  df-nn 11059  df-2 11117  df-3 11118  df-4 11119  df-5 11120  df-6 11121  df-7 11122  df-8 11123  df-9 11124  df-n0 11331  df-z 11416  df-dec 11532  df-uz 11726  df-q 11827  df-rp 11871  df-xneg 11984  df-xadd 11985  df-xmul 11986  df-ioo 12217  df-icc 12220  df-fz 12365  df-fzo 12505  df-seq 12842  df-exp 12901  df-hash 13158  df-cj 13883  df-re 13884  df-im 13885  df-sqrt 14019  df-abs 14020  df-struct 15906  df-ndx 15907  df-slot 15908  df-base 15910  df-sets 15911  df-ress 15912  df-plusg 16001  df-mulr 16002  df-starv 16003  df-sca 16004  df-vsca 16005  df-ip 16006  df-tset 16007  df-ple 16008  df-ds 16011  df-unif 16012  df-hom 16013  df-cco 16014  df-rest 16130  df-topn 16131  df-0g 16149  df-gsum 16150  df-topgen 16151  df-pt 16152  df-prds 16155  df-xrs 16209  df-qtop 16214  df-imas 16215  df-xps 16217  df-mre 16293  df-mrc 16294  df-acs 16296  df-mgm 17289  df-sgrp 17331  df-mnd 17342  df-submnd 17383  df-mulg 17588  df-cntz 17796  df-cmn 18241  df-psmet 19786  df-xmet 19787  df-met 19788  df-bl 19789  df-mopn 19790  df-cnfld 19795  df-top 20747  df-topon 20764  df-topsp 20785  df-bases 20798  df-cld 20871  df-cn 21079  df-cnp 21080  df-tx 21413  df-hmeo 21606  df-xms 22172  df-ms 22173  df-tms 22174  df-ii 22727  df-htpy 22816
This theorem is referenced by:  phtpycc  22837
  Copyright terms: Public domain W3C validator