 Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  hta Structured version   Visualization version   GIF version

Theorem hta 8745
 Description: A ZFC emulation of Hilbert's transfinite axiom. The set 𝐵 has the properties of Hilbert's epsilon, except that it also depends on a well-ordering 𝑅. This theorem arose from discussions with Raph Levien on 5-Mar-2004 about translating the HOL proof language, which uses Hilbert's epsilon. See http://us.metamath.org/downloads/choice.txt (copy of obsolete link http://ghilbert.org/choice.txt) and http://us.metamath.org/downloads/megillaward2005he.pdf. Hilbert's epsilon is described at http://plato.stanford.edu/entries/epsilon-calculus/. This theorem differs from Hilbert's transfinite axiom described on that page in that it requires 𝑅 We 𝐴 as an antecedent. Class 𝐴 collects the sets of the least rank for which 𝜑(𝑥) is true. Class 𝐵, which emulates the epsilon, is the minimum element in a well-ordering 𝑅 on 𝐴. If a well-ordering 𝑅 on 𝐴 can be expressed in a closed form, as might be the case if we are working with say natural numbers, we can eliminate the antecedent with modus ponens, giving us the exact equivalent of Hilbert's transfinite axiom. Otherwise, we replace 𝑅 with a dummy setvar variable, say 𝑤, and attach 𝑤 We 𝐴 as an antecedent in each step of the ZFC version of the HOL proof until the epsilon is eliminated. At that point, 𝐵 (which will have 𝑤 as a free variable) will no longer be present, and we can eliminate 𝑤 We 𝐴 by applying exlimiv 1856 and weth 9302, using scottexs 8735 to establish the existence of 𝐴. For a version of this theorem scheme using class (meta)variables instead of wff (meta)variables, see htalem 8744. (Contributed by NM, 11-Mar-2004.) (Revised by Mario Carneiro, 25-Jun-2015.)
Hypotheses
Ref Expression
hta.1 𝐴 = {𝑥 ∣ (𝜑 ∧ ∀𝑦([𝑦 / 𝑥]𝜑 → (rank‘𝑥) ⊆ (rank‘𝑦)))}
hta.2 𝐵 = (𝑧𝐴𝑤𝐴 ¬ 𝑤𝑅𝑧)
Assertion
Ref Expression
hta (𝑅 We 𝐴 → (𝜑[𝐵 / 𝑥]𝜑))
Distinct variable groups:   𝑥,𝑦   𝑧,𝑤,𝐴   𝜑,𝑦   𝑤,𝑅,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑧,𝑤)   𝐴(𝑥,𝑦)   𝐵(𝑥,𝑦,𝑧,𝑤)   𝑅(𝑥,𝑦)

Proof of Theorem hta
StepHypRef Expression
1 19.8a 2050 . . 3 (𝜑 → ∃𝑥𝜑)
2 scott0s 8736 . . . 4 (∃𝑥𝜑 ↔ {𝑥 ∣ (𝜑 ∧ ∀𝑦([𝑦 / 𝑥]𝜑 → (rank‘𝑥) ⊆ (rank‘𝑦)))} ≠ ∅)
3 hta.1 . . . . 5 𝐴 = {𝑥 ∣ (𝜑 ∧ ∀𝑦([𝑦 / 𝑥]𝜑 → (rank‘𝑥) ⊆ (rank‘𝑦)))}
43neeq1i 2855 . . . 4 (𝐴 ≠ ∅ ↔ {𝑥 ∣ (𝜑 ∧ ∀𝑦([𝑦 / 𝑥]𝜑 → (rank‘𝑥) ⊆ (rank‘𝑦)))} ≠ ∅)
52, 4bitr4i 267 . . 3 (∃𝑥𝜑𝐴 ≠ ∅)
61, 5sylib 208 . 2 (𝜑𝐴 ≠ ∅)
7 scottexs 8735 . . . . 5 {𝑥 ∣ (𝜑 ∧ ∀𝑦([𝑦 / 𝑥]𝜑 → (rank‘𝑥) ⊆ (rank‘𝑦)))} ∈ V
83, 7eqeltri 2695 . . . 4 𝐴 ∈ V
9 hta.2 . . . 4 𝐵 = (𝑧𝐴𝑤𝐴 ¬ 𝑤𝑅𝑧)
108, 9htalem 8744 . . 3 ((𝑅 We 𝐴𝐴 ≠ ∅) → 𝐵𝐴)
1110ex 450 . 2 (𝑅 We 𝐴 → (𝐴 ≠ ∅ → 𝐵𝐴))
12 simpl 473 . . . . . 6 ((𝜑 ∧ ∀𝑦([𝑦 / 𝑥]𝜑 → (rank‘𝑥) ⊆ (rank‘𝑦))) → 𝜑)
1312ss2abi 3666 . . . . 5 {𝑥 ∣ (𝜑 ∧ ∀𝑦([𝑦 / 𝑥]𝜑 → (rank‘𝑥) ⊆ (rank‘𝑦)))} ⊆ {𝑥𝜑}
143, 13eqsstri 3627 . . . 4 𝐴 ⊆ {𝑥𝜑}
1514sseli 3591 . . 3 (𝐵𝐴𝐵 ∈ {𝑥𝜑})
16 df-sbc 3430 . . 3 ([𝐵 / 𝑥]𝜑𝐵 ∈ {𝑥𝜑})
1715, 16sylibr 224 . 2 (𝐵𝐴[𝐵 / 𝑥]𝜑)
186, 11, 17syl56 36 1 (𝑅 We 𝐴 → (𝜑[𝐵 / 𝑥]𝜑))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ∧ wa 384  ∀wal 1479   = wceq 1481  ∃wex 1702   ∈ wcel 1988  {cab 2606   ≠ wne 2791  ∀wral 2909  Vcvv 3195  [wsbc 3429   ⊆ wss 3567  ∅c0 3907   class class class wbr 4644   We wwe 5062  ‘cfv 5876  ℩crio 6595  rankcrnk 8611 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1720  ax-4 1735  ax-5 1837  ax-6 1886  ax-7 1933  ax-8 1990  ax-9 1997  ax-10 2017  ax-11 2032  ax-12 2045  ax-13 2244  ax-ext 2600  ax-rep 4762  ax-sep 4772  ax-nul 4780  ax-pow 4834  ax-pr 4897  ax-un 6934  ax-reg 8482  ax-inf2 8523 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1484  df-ex 1703  df-nf 1708  df-sb 1879  df-eu 2472  df-mo 2473  df-clab 2607  df-cleq 2613  df-clel 2616  df-nfc 2751  df-ne 2792  df-ral 2914  df-rex 2915  df-reu 2916  df-rmo 2917  df-rab 2918  df-v 3197  df-sbc 3430  df-csb 3527  df-dif 3570  df-un 3572  df-in 3574  df-ss 3581  df-pss 3583  df-nul 3908  df-if 4078  df-pw 4151  df-sn 4169  df-pr 4171  df-tp 4173  df-op 4175  df-uni 4428  df-int 4467  df-iun 4513  df-iin 4514  df-br 4645  df-opab 4704  df-mpt 4721  df-tr 4744  df-id 5014  df-eprel 5019  df-po 5025  df-so 5026  df-fr 5063  df-we 5065  df-xp 5110  df-rel 5111  df-cnv 5112  df-co 5113  df-dm 5114  df-rn 5115  df-res 5116  df-ima 5117  df-pred 5668  df-ord 5714  df-on 5715  df-lim 5716  df-suc 5717  df-iota 5839  df-fun 5878  df-fn 5879  df-f 5880  df-f1 5881  df-fo 5882  df-f1o 5883  df-fv 5884  df-riota 6596  df-om 7051  df-wrecs 7392  df-recs 7453  df-rdg 7491  df-r1 8612  df-rank 8613 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator