![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > hst1h | Structured version Visualization version GIF version |
Description: The norm of a Hilbert-space-valued state equals one iff the state value equals the state value of the lattice unit. (Contributed by NM, 25-Jun-2006.) (New usage is discouraged.) |
Ref | Expression |
---|---|
hst1h | ⊢ ((𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) → ((normℎ‘(𝑆‘𝐴)) = 1 ↔ (𝑆‘𝐴) = (𝑆‘ ℋ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hstcl 29416 | . . . . 5 ⊢ ((𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) → (𝑆‘𝐴) ∈ ℋ) | |
2 | ax-hvaddid 28201 | . . . . 5 ⊢ ((𝑆‘𝐴) ∈ ℋ → ((𝑆‘𝐴) +ℎ 0ℎ) = (𝑆‘𝐴)) | |
3 | 1, 2 | syl 17 | . . . 4 ⊢ ((𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) → ((𝑆‘𝐴) +ℎ 0ℎ) = (𝑆‘𝐴)) |
4 | 3 | adantr 466 | . . 3 ⊢ (((𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) ∧ (normℎ‘(𝑆‘𝐴)) = 1) → ((𝑆‘𝐴) +ℎ 0ℎ) = (𝑆‘𝐴)) |
5 | ax-1cn 10196 | . . . . . . . . . . . 12 ⊢ 1 ∈ ℂ | |
6 | choccl 28505 | . . . . . . . . . . . . . . . 16 ⊢ (𝐴 ∈ Cℋ → (⊥‘𝐴) ∈ Cℋ ) | |
7 | hstcl 29416 | . . . . . . . . . . . . . . . 16 ⊢ ((𝑆 ∈ CHStates ∧ (⊥‘𝐴) ∈ Cℋ ) → (𝑆‘(⊥‘𝐴)) ∈ ℋ) | |
8 | 6, 7 | sylan2 580 | . . . . . . . . . . . . . . 15 ⊢ ((𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) → (𝑆‘(⊥‘𝐴)) ∈ ℋ) |
9 | normcl 28322 | . . . . . . . . . . . . . . 15 ⊢ ((𝑆‘(⊥‘𝐴)) ∈ ℋ → (normℎ‘(𝑆‘(⊥‘𝐴))) ∈ ℝ) | |
10 | 8, 9 | syl 17 | . . . . . . . . . . . . . 14 ⊢ ((𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) → (normℎ‘(𝑆‘(⊥‘𝐴))) ∈ ℝ) |
11 | 10 | resqcld 13242 | . . . . . . . . . . . . 13 ⊢ ((𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) → ((normℎ‘(𝑆‘(⊥‘𝐴)))↑2) ∈ ℝ) |
12 | 11 | recnd 10270 | . . . . . . . . . . . 12 ⊢ ((𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) → ((normℎ‘(𝑆‘(⊥‘𝐴)))↑2) ∈ ℂ) |
13 | pncan2 10490 | . . . . . . . . . . . 12 ⊢ ((1 ∈ ℂ ∧ ((normℎ‘(𝑆‘(⊥‘𝐴)))↑2) ∈ ℂ) → ((1 + ((normℎ‘(𝑆‘(⊥‘𝐴)))↑2)) − 1) = ((normℎ‘(𝑆‘(⊥‘𝐴)))↑2)) | |
14 | 5, 12, 13 | sylancr 575 | . . . . . . . . . . 11 ⊢ ((𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) → ((1 + ((normℎ‘(𝑆‘(⊥‘𝐴)))↑2)) − 1) = ((normℎ‘(𝑆‘(⊥‘𝐴)))↑2)) |
15 | 14 | adantr 466 | . . . . . . . . . 10 ⊢ (((𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) ∧ (normℎ‘(𝑆‘𝐴)) = 1) → ((1 + ((normℎ‘(𝑆‘(⊥‘𝐴)))↑2)) − 1) = ((normℎ‘(𝑆‘(⊥‘𝐴)))↑2)) |
16 | oveq1 6800 | . . . . . . . . . . . . . 14 ⊢ ((normℎ‘(𝑆‘𝐴)) = 1 → ((normℎ‘(𝑆‘𝐴))↑2) = (1↑2)) | |
17 | sq1 13165 | . . . . . . . . . . . . . 14 ⊢ (1↑2) = 1 | |
18 | 16, 17 | syl6req 2822 | . . . . . . . . . . . . 13 ⊢ ((normℎ‘(𝑆‘𝐴)) = 1 → 1 = ((normℎ‘(𝑆‘𝐴))↑2)) |
19 | 18 | oveq1d 6808 | . . . . . . . . . . . 12 ⊢ ((normℎ‘(𝑆‘𝐴)) = 1 → (1 + ((normℎ‘(𝑆‘(⊥‘𝐴)))↑2)) = (((normℎ‘(𝑆‘𝐴))↑2) + ((normℎ‘(𝑆‘(⊥‘𝐴)))↑2))) |
20 | hstnmoc 29422 | . . . . . . . . . . . 12 ⊢ ((𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) → (((normℎ‘(𝑆‘𝐴))↑2) + ((normℎ‘(𝑆‘(⊥‘𝐴)))↑2)) = 1) | |
21 | 19, 20 | sylan9eqr 2827 | . . . . . . . . . . 11 ⊢ (((𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) ∧ (normℎ‘(𝑆‘𝐴)) = 1) → (1 + ((normℎ‘(𝑆‘(⊥‘𝐴)))↑2)) = 1) |
22 | 21 | oveq1d 6808 | . . . . . . . . . 10 ⊢ (((𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) ∧ (normℎ‘(𝑆‘𝐴)) = 1) → ((1 + ((normℎ‘(𝑆‘(⊥‘𝐴)))↑2)) − 1) = (1 − 1)) |
23 | 15, 22 | eqtr3d 2807 | . . . . . . . . 9 ⊢ (((𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) ∧ (normℎ‘(𝑆‘𝐴)) = 1) → ((normℎ‘(𝑆‘(⊥‘𝐴)))↑2) = (1 − 1)) |
24 | 1m1e0 11291 | . . . . . . . . 9 ⊢ (1 − 1) = 0 | |
25 | 23, 24 | syl6eq 2821 | . . . . . . . 8 ⊢ (((𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) ∧ (normℎ‘(𝑆‘𝐴)) = 1) → ((normℎ‘(𝑆‘(⊥‘𝐴)))↑2) = 0) |
26 | 25 | ex 397 | . . . . . . 7 ⊢ ((𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) → ((normℎ‘(𝑆‘𝐴)) = 1 → ((normℎ‘(𝑆‘(⊥‘𝐴)))↑2) = 0)) |
27 | 10 | recnd 10270 | . . . . . . . . 9 ⊢ ((𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) → (normℎ‘(𝑆‘(⊥‘𝐴))) ∈ ℂ) |
28 | sqeq0 13134 | . . . . . . . . 9 ⊢ ((normℎ‘(𝑆‘(⊥‘𝐴))) ∈ ℂ → (((normℎ‘(𝑆‘(⊥‘𝐴)))↑2) = 0 ↔ (normℎ‘(𝑆‘(⊥‘𝐴))) = 0)) | |
29 | 27, 28 | syl 17 | . . . . . . . 8 ⊢ ((𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) → (((normℎ‘(𝑆‘(⊥‘𝐴)))↑2) = 0 ↔ (normℎ‘(𝑆‘(⊥‘𝐴))) = 0)) |
30 | norm-i 28326 | . . . . . . . . 9 ⊢ ((𝑆‘(⊥‘𝐴)) ∈ ℋ → ((normℎ‘(𝑆‘(⊥‘𝐴))) = 0 ↔ (𝑆‘(⊥‘𝐴)) = 0ℎ)) | |
31 | 8, 30 | syl 17 | . . . . . . . 8 ⊢ ((𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) → ((normℎ‘(𝑆‘(⊥‘𝐴))) = 0 ↔ (𝑆‘(⊥‘𝐴)) = 0ℎ)) |
32 | 29, 31 | bitrd 268 | . . . . . . 7 ⊢ ((𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) → (((normℎ‘(𝑆‘(⊥‘𝐴)))↑2) = 0 ↔ (𝑆‘(⊥‘𝐴)) = 0ℎ)) |
33 | 26, 32 | sylibd 229 | . . . . . 6 ⊢ ((𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) → ((normℎ‘(𝑆‘𝐴)) = 1 → (𝑆‘(⊥‘𝐴)) = 0ℎ)) |
34 | 33 | imp 393 | . . . . 5 ⊢ (((𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) ∧ (normℎ‘(𝑆‘𝐴)) = 1) → (𝑆‘(⊥‘𝐴)) = 0ℎ) |
35 | 34 | oveq2d 6809 | . . . 4 ⊢ (((𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) ∧ (normℎ‘(𝑆‘𝐴)) = 1) → ((𝑆‘𝐴) +ℎ (𝑆‘(⊥‘𝐴))) = ((𝑆‘𝐴) +ℎ 0ℎ)) |
36 | hstoc 29421 | . . . . 5 ⊢ ((𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) → ((𝑆‘𝐴) +ℎ (𝑆‘(⊥‘𝐴))) = (𝑆‘ ℋ)) | |
37 | 36 | adantr 466 | . . . 4 ⊢ (((𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) ∧ (normℎ‘(𝑆‘𝐴)) = 1) → ((𝑆‘𝐴) +ℎ (𝑆‘(⊥‘𝐴))) = (𝑆‘ ℋ)) |
38 | 35, 37 | eqtr3d 2807 | . . 3 ⊢ (((𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) ∧ (normℎ‘(𝑆‘𝐴)) = 1) → ((𝑆‘𝐴) +ℎ 0ℎ) = (𝑆‘ ℋ)) |
39 | 4, 38 | eqtr3d 2807 | . 2 ⊢ (((𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) ∧ (normℎ‘(𝑆‘𝐴)) = 1) → (𝑆‘𝐴) = (𝑆‘ ℋ)) |
40 | fveq2 6332 | . . 3 ⊢ ((𝑆‘𝐴) = (𝑆‘ ℋ) → (normℎ‘(𝑆‘𝐴)) = (normℎ‘(𝑆‘ ℋ))) | |
41 | hst1a 29417 | . . . 4 ⊢ (𝑆 ∈ CHStates → (normℎ‘(𝑆‘ ℋ)) = 1) | |
42 | 41 | adantr 466 | . . 3 ⊢ ((𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) → (normℎ‘(𝑆‘ ℋ)) = 1) |
43 | 40, 42 | sylan9eqr 2827 | . 2 ⊢ (((𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) ∧ (𝑆‘𝐴) = (𝑆‘ ℋ)) → (normℎ‘(𝑆‘𝐴)) = 1) |
44 | 39, 43 | impbida 802 | 1 ⊢ ((𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) → ((normℎ‘(𝑆‘𝐴)) = 1 ↔ (𝑆‘𝐴) = (𝑆‘ ℋ))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 382 = wceq 1631 ∈ wcel 2145 ‘cfv 6031 (class class class)co 6793 ℂcc 10136 ℝcr 10137 0cc0 10138 1c1 10139 + caddc 10141 − cmin 10468 2c2 11272 ↑cexp 13067 ℋchil 28116 +ℎ cva 28117 normℎcno 28120 0ℎc0v 28121 Cℋ cch 28126 ⊥cort 28127 CHStateschst 28160 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-rep 4904 ax-sep 4915 ax-nul 4923 ax-pow 4974 ax-pr 5034 ax-un 7096 ax-inf2 8702 ax-cnex 10194 ax-resscn 10195 ax-1cn 10196 ax-icn 10197 ax-addcl 10198 ax-addrcl 10199 ax-mulcl 10200 ax-mulrcl 10201 ax-mulcom 10202 ax-addass 10203 ax-mulass 10204 ax-distr 10205 ax-i2m1 10206 ax-1ne0 10207 ax-1rid 10208 ax-rnegex 10209 ax-rrecex 10210 ax-cnre 10211 ax-pre-lttri 10212 ax-pre-lttrn 10213 ax-pre-ltadd 10214 ax-pre-mulgt0 10215 ax-pre-sup 10216 ax-addf 10217 ax-mulf 10218 ax-hilex 28196 ax-hfvadd 28197 ax-hvcom 28198 ax-hvass 28199 ax-hv0cl 28200 ax-hvaddid 28201 ax-hfvmul 28202 ax-hvmulid 28203 ax-hvmulass 28204 ax-hvdistr1 28205 ax-hvdistr2 28206 ax-hvmul0 28207 ax-hfi 28276 ax-his1 28279 ax-his2 28280 ax-his3 28281 ax-his4 28282 ax-hcompl 28399 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3or 1072 df-3an 1073 df-tru 1634 df-fal 1637 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3353 df-sbc 3588 df-csb 3683 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-pss 3739 df-nul 4064 df-if 4226 df-pw 4299 df-sn 4317 df-pr 4319 df-tp 4321 df-op 4323 df-uni 4575 df-int 4612 df-iun 4656 df-iin 4657 df-br 4787 df-opab 4847 df-mpt 4864 df-tr 4887 df-id 5157 df-eprel 5162 df-po 5170 df-so 5171 df-fr 5208 df-se 5209 df-we 5210 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-pred 5823 df-ord 5869 df-on 5870 df-lim 5871 df-suc 5872 df-iota 5994 df-fun 6033 df-fn 6034 df-f 6035 df-f1 6036 df-fo 6037 df-f1o 6038 df-fv 6039 df-isom 6040 df-riota 6754 df-ov 6796 df-oprab 6797 df-mpt2 6798 df-of 7044 df-om 7213 df-1st 7315 df-2nd 7316 df-supp 7447 df-wrecs 7559 df-recs 7621 df-rdg 7659 df-1o 7713 df-2o 7714 df-oadd 7717 df-er 7896 df-map 8011 df-pm 8012 df-ixp 8063 df-en 8110 df-dom 8111 df-sdom 8112 df-fin 8113 df-fsupp 8432 df-fi 8473 df-sup 8504 df-inf 8505 df-oi 8571 df-card 8965 df-cda 9192 df-pnf 10278 df-mnf 10279 df-xr 10280 df-ltxr 10281 df-le 10282 df-sub 10470 df-neg 10471 df-div 10887 df-nn 11223 df-2 11281 df-3 11282 df-4 11283 df-5 11284 df-6 11285 df-7 11286 df-8 11287 df-9 11288 df-n0 11495 df-z 11580 df-dec 11696 df-uz 11889 df-q 11992 df-rp 12036 df-xneg 12151 df-xadd 12152 df-xmul 12153 df-ioo 12384 df-icc 12387 df-fz 12534 df-fzo 12674 df-seq 13009 df-exp 13068 df-hash 13322 df-cj 14047 df-re 14048 df-im 14049 df-sqrt 14183 df-abs 14184 df-clim 14427 df-sum 14625 df-struct 16066 df-ndx 16067 df-slot 16068 df-base 16070 df-sets 16071 df-ress 16072 df-plusg 16162 df-mulr 16163 df-starv 16164 df-sca 16165 df-vsca 16166 df-ip 16167 df-tset 16168 df-ple 16169 df-ds 16172 df-unif 16173 df-hom 16174 df-cco 16175 df-rest 16291 df-topn 16292 df-0g 16310 df-gsum 16311 df-topgen 16312 df-pt 16313 df-prds 16316 df-xrs 16370 df-qtop 16375 df-imas 16376 df-xps 16378 df-mre 16454 df-mrc 16455 df-acs 16457 df-mgm 17450 df-sgrp 17492 df-mnd 17503 df-submnd 17544 df-mulg 17749 df-cntz 17957 df-cmn 18402 df-psmet 19953 df-xmet 19954 df-met 19955 df-bl 19956 df-mopn 19957 df-cnfld 19962 df-top 20919 df-topon 20936 df-topsp 20958 df-bases 20971 df-cn 21252 df-cnp 21253 df-lm 21254 df-haus 21340 df-tx 21586 df-hmeo 21779 df-xms 22345 df-ms 22346 df-tms 22347 df-cau 23273 df-grpo 27687 df-gid 27688 df-ginv 27689 df-gdiv 27690 df-ablo 27739 df-vc 27754 df-nv 27787 df-va 27790 df-ba 27791 df-sm 27792 df-0v 27793 df-vs 27794 df-nmcv 27795 df-ims 27796 df-dip 27896 df-hnorm 28165 df-hvsub 28168 df-hlim 28169 df-hcau 28170 df-sh 28404 df-ch 28418 df-oc 28449 df-ch0 28450 df-chj 28509 df-hst 29411 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |