Mathbox for Glauco Siliprandi < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hspmbllem3 Structured version   Visualization version   GIF version

Theorem hspmbllem3 41348
 Description: Any half-space of the n-dimensional Real numbers is Lebesgue measurable. Lemma 115F of [Fremlin1] p. 31. This proof handles the non-trivial cases (nonzero dimension and finite outer measure) (Contributed by Glauco Siliprandi, 24-Dec-2020.)
Hypotheses
Ref Expression
hspmbllem3.h 𝐻 = (𝑥 ∈ Fin ↦ (𝑙𝑥, 𝑦 ∈ ℝ ↦ X𝑘𝑥 if(𝑘 = 𝑙, (-∞(,)𝑦), ℝ)))
hspmbllem3.x (𝜑𝑋 ∈ Fin)
hspmbllem3.i (𝜑𝐾𝑋)
hspmbllem3.y (𝜑𝑌 ∈ ℝ)
hspmbllem3.a (𝜑 → ((voln*‘𝑋)‘𝐴) ∈ ℝ)
hspmbllem3.s (𝜑𝐴 ⊆ (ℝ ↑𝑚 𝑋))
hspmbllem3.c 𝐶 = (𝑎 ∈ 𝒫 (ℝ ↑𝑚 𝑋) ↦ {𝑙 ∈ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ) ∣ 𝑎 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑙𝑗))‘𝑘)})
hspmbllem3.l 𝐿 = ( ∈ ((ℝ × ℝ) ↑𝑚 𝑋) ↦ ∏𝑘𝑋 (vol‘(([,) ∘ )‘𝑘)))
hspmbllem3.d 𝐷 = (𝑎 ∈ 𝒫 (ℝ ↑𝑚 𝑋) ↦ (𝑟 ∈ ℝ+ ↦ {𝑖 ∈ (𝐶𝑎) ∣ (Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝑖𝑗)))) ≤ (((voln*‘𝑋)‘𝑎) +𝑒 𝑟)}))
hspmbllem3.10 𝐵 = (𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ (1st ‘((𝑖𝑗)‘𝑘))))
hspmbllem3.11 𝑇 = (𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ (2nd ‘((𝑖𝑗)‘𝑘))))
Assertion
Ref Expression
hspmbllem3 (𝜑 → (((voln*‘𝑋)‘(𝐴 ∩ (𝐾(𝐻𝑋)𝑌))) +𝑒 ((voln*‘𝑋)‘(𝐴 ∖ (𝐾(𝐻𝑋)𝑌)))) ≤ ((voln*‘𝑋)‘𝐴))
Distinct variable groups:   𝐴,𝑎,,𝑖,𝑗,𝑘,𝑙,𝑥,𝑦   𝐴,𝑟,𝑎,,𝑖,𝑗   𝐵,𝑎,,𝑘,𝑙   𝐶,𝑎,,𝑖,𝑟   𝐷,𝑎,,𝑗,𝑘,𝑙,𝑥,𝑦   𝐷,𝑟   𝑖,𝐻,𝑗,𝑘   𝐾,𝑎,,𝑖,𝑗,𝑘,𝑙,𝑥,𝑦   𝐿,𝑎,,𝑖,𝑟   𝑇,𝑎,,𝑗,𝑘,𝑙   𝑋,𝑎,,𝑖,𝑗,𝑘,𝑙,𝑥,𝑦   𝑋,𝑟   𝑌,𝑎,,𝑖,𝑗,𝑘,𝑙,𝑥,𝑦   𝜑,𝑎,,𝑖,𝑗,𝑘,𝑙,𝑥,𝑦   𝜑,𝑟
Allowed substitution hints:   𝐵(𝑥,𝑦,𝑖,𝑗,𝑟)   𝐶(𝑥,𝑦,𝑗,𝑘,𝑙)   𝐷(𝑖)   𝑇(𝑥,𝑦,𝑖,𝑟)   𝐻(𝑥,𝑦,,𝑟,𝑎,𝑙)   𝐾(𝑟)   𝐿(𝑥,𝑦,𝑗,𝑘,𝑙)   𝑌(𝑟)

Proof of Theorem hspmbllem3
Dummy variables 𝑏 𝑐 𝑒 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 hspmbllem3.a . . . 4 (𝜑 → ((voln*‘𝑋)‘𝐴) ∈ ℝ)
2 hspmbllem3.x . . . . 5 (𝜑𝑋 ∈ Fin)
3 inss1 3976 . . . . . 6 (𝐴 ∩ (𝐾(𝐻𝑋)𝑌)) ⊆ 𝐴
4 hspmbllem3.s . . . . . 6 (𝜑𝐴 ⊆ (ℝ ↑𝑚 𝑋))
53, 4syl5ss 3755 . . . . 5 (𝜑 → (𝐴 ∩ (𝐾(𝐻𝑋)𝑌)) ⊆ (ℝ ↑𝑚 𝑋))
62, 5ovncl 41287 . . . 4 (𝜑 → ((voln*‘𝑋)‘(𝐴 ∩ (𝐾(𝐻𝑋)𝑌))) ∈ (0[,]+∞))
73a1i 11 . . . . 5 (𝜑 → (𝐴 ∩ (𝐾(𝐻𝑋)𝑌)) ⊆ 𝐴)
82, 7, 4ovnssle 41281 . . . 4 (𝜑 → ((voln*‘𝑋)‘(𝐴 ∩ (𝐾(𝐻𝑋)𝑌))) ≤ ((voln*‘𝑋)‘𝐴))
91, 6, 8ge0lere 40262 . . 3 (𝜑 → ((voln*‘𝑋)‘(𝐴 ∩ (𝐾(𝐻𝑋)𝑌))) ∈ ℝ)
104ssdifssd 3891 . . . . 5 (𝜑 → (𝐴 ∖ (𝐾(𝐻𝑋)𝑌)) ⊆ (ℝ ↑𝑚 𝑋))
112, 10ovncl 41287 . . . 4 (𝜑 → ((voln*‘𝑋)‘(𝐴 ∖ (𝐾(𝐻𝑋)𝑌))) ∈ (0[,]+∞))
12 difssd 3881 . . . . 5 (𝜑 → (𝐴 ∖ (𝐾(𝐻𝑋)𝑌)) ⊆ 𝐴)
132, 12, 4ovnssle 41281 . . . 4 (𝜑 → ((voln*‘𝑋)‘(𝐴 ∖ (𝐾(𝐻𝑋)𝑌))) ≤ ((voln*‘𝑋)‘𝐴))
141, 11, 13ge0lere 40262 . . 3 (𝜑 → ((voln*‘𝑋)‘(𝐴 ∖ (𝐾(𝐻𝑋)𝑌))) ∈ ℝ)
15 rexadd 12256 . . 3 ((((voln*‘𝑋)‘(𝐴 ∩ (𝐾(𝐻𝑋)𝑌))) ∈ ℝ ∧ ((voln*‘𝑋)‘(𝐴 ∖ (𝐾(𝐻𝑋)𝑌))) ∈ ℝ) → (((voln*‘𝑋)‘(𝐴 ∩ (𝐾(𝐻𝑋)𝑌))) +𝑒 ((voln*‘𝑋)‘(𝐴 ∖ (𝐾(𝐻𝑋)𝑌)))) = (((voln*‘𝑋)‘(𝐴 ∩ (𝐾(𝐻𝑋)𝑌))) + ((voln*‘𝑋)‘(𝐴 ∖ (𝐾(𝐻𝑋)𝑌)))))
169, 14, 15syl2anc 696 . 2 (𝜑 → (((voln*‘𝑋)‘(𝐴 ∩ (𝐾(𝐻𝑋)𝑌))) +𝑒 ((voln*‘𝑋)‘(𝐴 ∖ (𝐾(𝐻𝑋)𝑌)))) = (((voln*‘𝑋)‘(𝐴 ∩ (𝐾(𝐻𝑋)𝑌))) + ((voln*‘𝑋)‘(𝐴 ∖ (𝐾(𝐻𝑋)𝑌)))))
172adantr 472 . . . . . 6 ((𝜑𝑒 ∈ ℝ+) → 𝑋 ∈ Fin)
18 hspmbllem3.i . . . . . . . 8 (𝜑𝐾𝑋)
19 ne0i 4064 . . . . . . . 8 (𝐾𝑋𝑋 ≠ ∅)
2018, 19syl 17 . . . . . . 7 (𝜑𝑋 ≠ ∅)
2120adantr 472 . . . . . 6 ((𝜑𝑒 ∈ ℝ+) → 𝑋 ≠ ∅)
224adantr 472 . . . . . 6 ((𝜑𝑒 ∈ ℝ+) → 𝐴 ⊆ (ℝ ↑𝑚 𝑋))
23 simpr 479 . . . . . 6 ((𝜑𝑒 ∈ ℝ+) → 𝑒 ∈ ℝ+)
24 hspmbllem3.c . . . . . 6 𝐶 = (𝑎 ∈ 𝒫 (ℝ ↑𝑚 𝑋) ↦ {𝑙 ∈ (((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ) ∣ 𝑎 𝑗 ∈ ℕ X𝑘𝑋 (([,) ∘ (𝑙𝑗))‘𝑘)})
25 hspmbllem3.l . . . . . 6 𝐿 = ( ∈ ((ℝ × ℝ) ↑𝑚 𝑋) ↦ ∏𝑘𝑋 (vol‘(([,) ∘ )‘𝑘)))
26 hspmbllem3.d . . . . . 6 𝐷 = (𝑎 ∈ 𝒫 (ℝ ↑𝑚 𝑋) ↦ (𝑟 ∈ ℝ+ ↦ {𝑖 ∈ (𝐶𝑎) ∣ (Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝑖𝑗)))) ≤ (((voln*‘𝑋)‘𝑎) +𝑒 𝑟)}))
2717, 21, 22, 23, 24, 25, 26ovncvrrp 41284 . . . . 5 ((𝜑𝑒 ∈ ℝ+) → ∃𝑖 𝑖 ∈ ((𝐷𝐴)‘𝑒))
28 hspmbllem3.h . . . . . . . 8 𝐻 = (𝑥 ∈ Fin ↦ (𝑙𝑥, 𝑦 ∈ ℝ ↦ X𝑘𝑥 if(𝑘 = 𝑙, (-∞(,)𝑦), ℝ)))
2917adantr 472 . . . . . . . 8 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑖 ∈ ((𝐷𝐴)‘𝑒)) → 𝑋 ∈ Fin)
3018ad2antrr 764 . . . . . . . 8 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑖 ∈ ((𝐷𝐴)‘𝑒)) → 𝐾𝑋)
31 hspmbllem3.y . . . . . . . . 9 (𝜑𝑌 ∈ ℝ)
3231ad2antrr 764 . . . . . . . 8 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑖 ∈ ((𝐷𝐴)‘𝑒)) → 𝑌 ∈ ℝ)
3323adantr 472 . . . . . . . 8 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑖 ∈ ((𝐷𝐴)‘𝑒)) → 𝑒 ∈ ℝ+)
3422adantr 472 . . . . . . . . . . 11 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑖 ∈ ((𝐷𝐴)‘𝑒)) → 𝐴 ⊆ (ℝ ↑𝑚 𝑋))
35 fveq1 6351 . . . . . . . . . . . . . . . . . . 19 (𝑖 = → (𝑖𝑗) = (𝑗))
3635fveq2d 6356 . . . . . . . . . . . . . . . . . 18 (𝑖 = → (𝐿‘(𝑖𝑗)) = (𝐿‘(𝑗)))
3736mpteq2dv 4897 . . . . . . . . . . . . . . . . 17 (𝑖 = → (𝑗 ∈ ℕ ↦ (𝐿‘(𝑖𝑗))) = (𝑗 ∈ ℕ ↦ (𝐿‘(𝑗))))
3837fveq2d 6356 . . . . . . . . . . . . . . . 16 (𝑖 = → (Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝑖𝑗)))) = (Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝑗)))))
3938breq1d 4814 . . . . . . . . . . . . . . 15 (𝑖 = → ((Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝑖𝑗)))) ≤ (((voln*‘𝑋)‘𝑎) +𝑒 𝑟) ↔ (Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝑗)))) ≤ (((voln*‘𝑋)‘𝑎) +𝑒 𝑟)))
4039cbvrabv 3339 . . . . . . . . . . . . . 14 {𝑖 ∈ (𝐶𝑎) ∣ (Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝑖𝑗)))) ≤ (((voln*‘𝑋)‘𝑎) +𝑒 𝑟)} = { ∈ (𝐶𝑎) ∣ (Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝑗)))) ≤ (((voln*‘𝑋)‘𝑎) +𝑒 𝑟)}
4140mpteq2i 4893 . . . . . . . . . . . . 13 (𝑟 ∈ ℝ+ ↦ {𝑖 ∈ (𝐶𝑎) ∣ (Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝑖𝑗)))) ≤ (((voln*‘𝑋)‘𝑎) +𝑒 𝑟)}) = (𝑟 ∈ ℝ+ ↦ { ∈ (𝐶𝑎) ∣ (Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝑗)))) ≤ (((voln*‘𝑋)‘𝑎) +𝑒 𝑟)})
4241mpteq2i 4893 . . . . . . . . . . . 12 (𝑎 ∈ 𝒫 (ℝ ↑𝑚 𝑋) ↦ (𝑟 ∈ ℝ+ ↦ {𝑖 ∈ (𝐶𝑎) ∣ (Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝑖𝑗)))) ≤ (((voln*‘𝑋)‘𝑎) +𝑒 𝑟)})) = (𝑎 ∈ 𝒫 (ℝ ↑𝑚 𝑋) ↦ (𝑟 ∈ ℝ+ ↦ { ∈ (𝐶𝑎) ∣ (Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝑗)))) ≤ (((voln*‘𝑋)‘𝑎) +𝑒 𝑟)}))
4326, 42eqtri 2782 . . . . . . . . . . 11 𝐷 = (𝑎 ∈ 𝒫 (ℝ ↑𝑚 𝑋) ↦ (𝑟 ∈ ℝ+ ↦ { ∈ (𝐶𝑎) ∣ (Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝑗)))) ≤ (((voln*‘𝑋)‘𝑎) +𝑒 𝑟)}))
44 simpr 479 . . . . . . . . . . 11 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑖 ∈ ((𝐷𝐴)‘𝑒)) → 𝑖 ∈ ((𝐷𝐴)‘𝑒))
45 hspmbllem3.10 . . . . . . . . . . 11 𝐵 = (𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ (1st ‘((𝑖𝑗)‘𝑘))))
46 hspmbllem3.11 . . . . . . . . . . 11 𝑇 = (𝑗 ∈ ℕ ↦ (𝑘𝑋 ↦ (2nd ‘((𝑖𝑗)‘𝑘))))
4729, 34, 33, 24, 25, 43, 44, 45, 46ovncvr2 41331 . . . . . . . . . 10 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑖 ∈ ((𝐷𝐴)‘𝑒)) → (((𝐵:ℕ⟶(ℝ ↑𝑚 𝑋) ∧ 𝑇:ℕ⟶(ℝ ↑𝑚 𝑋)) ∧ 𝐴 𝑗 ∈ ℕ X𝑘𝑋 (((𝐵𝑗)‘𝑘)[,)((𝑇𝑗)‘𝑘))) ∧ (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(((𝐵𝑗)‘𝑘)[,)((𝑇𝑗)‘𝑘))))) ≤ (((voln*‘𝑋)‘𝐴) +𝑒 𝑒)))
4847simplld 808 . . . . . . . . 9 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑖 ∈ ((𝐷𝐴)‘𝑒)) → (𝐵:ℕ⟶(ℝ ↑𝑚 𝑋) ∧ 𝑇:ℕ⟶(ℝ ↑𝑚 𝑋)))
4948simpld 477 . . . . . . . 8 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑖 ∈ ((𝐷𝐴)‘𝑒)) → 𝐵:ℕ⟶(ℝ ↑𝑚 𝑋))
5048simprd 482 . . . . . . . 8 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑖 ∈ ((𝐷𝐴)‘𝑒)) → 𝑇:ℕ⟶(ℝ ↑𝑚 𝑋))
5147simplrd 810 . . . . . . . 8 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑖 ∈ ((𝐷𝐴)‘𝑒)) → 𝐴 𝑗 ∈ ℕ X𝑘𝑋 (((𝐵𝑗)‘𝑘)[,)((𝑇𝑗)‘𝑘)))
5247simprd 482 . . . . . . . . 9 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑖 ∈ ((𝐷𝐴)‘𝑒)) → (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(((𝐵𝑗)‘𝑘)[,)((𝑇𝑗)‘𝑘))))) ≤ (((voln*‘𝑋)‘𝐴) +𝑒 𝑒))
531adantr 472 . . . . . . . . . . 11 ((𝜑𝑒 ∈ ℝ+) → ((voln*‘𝑋)‘𝐴) ∈ ℝ)
5423rpred 12065 . . . . . . . . . . 11 ((𝜑𝑒 ∈ ℝ+) → 𝑒 ∈ ℝ)
5553, 54rexaddd 12258 . . . . . . . . . 10 ((𝜑𝑒 ∈ ℝ+) → (((voln*‘𝑋)‘𝐴) +𝑒 𝑒) = (((voln*‘𝑋)‘𝐴) + 𝑒))
5655adantr 472 . . . . . . . . 9 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑖 ∈ ((𝐷𝐴)‘𝑒)) → (((voln*‘𝑋)‘𝐴) +𝑒 𝑒) = (((voln*‘𝑋)‘𝐴) + 𝑒))
5752, 56breqtrd 4830 . . . . . . . 8 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑖 ∈ ((𝐷𝐴)‘𝑒)) → (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑋 (vol‘(((𝐵𝑗)‘𝑘)[,)((𝑇𝑗)‘𝑘))))) ≤ (((voln*‘𝑋)‘𝐴) + 𝑒))
581ad2antrr 764 . . . . . . . 8 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑖 ∈ ((𝐷𝐴)‘𝑒)) → ((voln*‘𝑋)‘𝐴) ∈ ℝ)
599ad2antrr 764 . . . . . . . 8 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑖 ∈ ((𝐷𝐴)‘𝑒)) → ((voln*‘𝑋)‘(𝐴 ∩ (𝐾(𝐻𝑋)𝑌))) ∈ ℝ)
6014ad2antrr 764 . . . . . . . 8 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑖 ∈ ((𝐷𝐴)‘𝑒)) → ((voln*‘𝑋)‘(𝐴 ∖ (𝐾(𝐻𝑋)𝑌))) ∈ ℝ)
61 eqid 2760 . . . . . . . 8 (𝑥 ∈ Fin ↦ (𝑎 ∈ (ℝ ↑𝑚 𝑥), 𝑏 ∈ (ℝ ↑𝑚 𝑥) ↦ if(𝑥 = ∅, 0, ∏𝑘𝑥 (vol‘((𝑎𝑘)[,)(𝑏𝑘)))))) = (𝑥 ∈ Fin ↦ (𝑎 ∈ (ℝ ↑𝑚 𝑥), 𝑏 ∈ (ℝ ↑𝑚 𝑥) ↦ if(𝑥 = ∅, 0, ∏𝑘𝑥 (vol‘((𝑎𝑘)[,)(𝑏𝑘))))))
62 eqid 2760 . . . . . . . 8 (𝑦 ∈ ℝ ↦ (𝑐 ∈ (ℝ ↑𝑚 𝑋) ↦ (𝑋 ↦ if( ∈ (𝑋 ∖ {𝐾}), (𝑐), if((𝑐) ≤ 𝑦, (𝑐), 𝑦))))) = (𝑦 ∈ ℝ ↦ (𝑐 ∈ (ℝ ↑𝑚 𝑋) ↦ (𝑋 ↦ if( ∈ (𝑋 ∖ {𝐾}), (𝑐), if((𝑐) ≤ 𝑦, (𝑐), 𝑦)))))
63 eqid 2760 . . . . . . . 8 (𝑥 ∈ ℝ ↦ (𝑐 ∈ (ℝ ↑𝑚 𝑋) ↦ (𝑋 ↦ if( = 𝐾, if(𝑥 ≤ (𝑐), (𝑐), 𝑥), (𝑐))))) = (𝑥 ∈ ℝ ↦ (𝑐 ∈ (ℝ ↑𝑚 𝑋) ↦ (𝑋 ↦ if( = 𝐾, if(𝑥 ≤ (𝑐), (𝑐), 𝑥), (𝑐)))))
6428, 29, 30, 32, 33, 49, 50, 51, 57, 58, 59, 60, 61, 62, 63hspmbllem2 41347 . . . . . . 7 (((𝜑𝑒 ∈ ℝ+) ∧ 𝑖 ∈ ((𝐷𝐴)‘𝑒)) → (((voln*‘𝑋)‘(𝐴 ∩ (𝐾(𝐻𝑋)𝑌))) + ((voln*‘𝑋)‘(𝐴 ∖ (𝐾(𝐻𝑋)𝑌)))) ≤ (((voln*‘𝑋)‘𝐴) + 𝑒))
6564ex 449 . . . . . 6 ((𝜑𝑒 ∈ ℝ+) → (𝑖 ∈ ((𝐷𝐴)‘𝑒) → (((voln*‘𝑋)‘(𝐴 ∩ (𝐾(𝐻𝑋)𝑌))) + ((voln*‘𝑋)‘(𝐴 ∖ (𝐾(𝐻𝑋)𝑌)))) ≤ (((voln*‘𝑋)‘𝐴) + 𝑒)))
6665exlimdv 2010 . . . . 5 ((𝜑𝑒 ∈ ℝ+) → (∃𝑖 𝑖 ∈ ((𝐷𝐴)‘𝑒) → (((voln*‘𝑋)‘(𝐴 ∩ (𝐾(𝐻𝑋)𝑌))) + ((voln*‘𝑋)‘(𝐴 ∖ (𝐾(𝐻𝑋)𝑌)))) ≤ (((voln*‘𝑋)‘𝐴) + 𝑒)))
6727, 66mpd 15 . . . 4 ((𝜑𝑒 ∈ ℝ+) → (((voln*‘𝑋)‘(𝐴 ∩ (𝐾(𝐻𝑋)𝑌))) + ((voln*‘𝑋)‘(𝐴 ∖ (𝐾(𝐻𝑋)𝑌)))) ≤ (((voln*‘𝑋)‘𝐴) + 𝑒))
6867ralrimiva 3104 . . 3 (𝜑 → ∀𝑒 ∈ ℝ+ (((voln*‘𝑋)‘(𝐴 ∩ (𝐾(𝐻𝑋)𝑌))) + ((voln*‘𝑋)‘(𝐴 ∖ (𝐾(𝐻𝑋)𝑌)))) ≤ (((voln*‘𝑋)‘𝐴) + 𝑒))
699, 14readdcld 10261 . . . 4 (𝜑 → (((voln*‘𝑋)‘(𝐴 ∩ (𝐾(𝐻𝑋)𝑌))) + ((voln*‘𝑋)‘(𝐴 ∖ (𝐾(𝐻𝑋)𝑌)))) ∈ ℝ)
70 alrple 12230 . . . 4 (((((voln*‘𝑋)‘(𝐴 ∩ (𝐾(𝐻𝑋)𝑌))) + ((voln*‘𝑋)‘(𝐴 ∖ (𝐾(𝐻𝑋)𝑌)))) ∈ ℝ ∧ ((voln*‘𝑋)‘𝐴) ∈ ℝ) → ((((voln*‘𝑋)‘(𝐴 ∩ (𝐾(𝐻𝑋)𝑌))) + ((voln*‘𝑋)‘(𝐴 ∖ (𝐾(𝐻𝑋)𝑌)))) ≤ ((voln*‘𝑋)‘𝐴) ↔ ∀𝑒 ∈ ℝ+ (((voln*‘𝑋)‘(𝐴 ∩ (𝐾(𝐻𝑋)𝑌))) + ((voln*‘𝑋)‘(𝐴 ∖ (𝐾(𝐻𝑋)𝑌)))) ≤ (((voln*‘𝑋)‘𝐴) + 𝑒)))
7169, 1, 70syl2anc 696 . . 3 (𝜑 → ((((voln*‘𝑋)‘(𝐴 ∩ (𝐾(𝐻𝑋)𝑌))) + ((voln*‘𝑋)‘(𝐴 ∖ (𝐾(𝐻𝑋)𝑌)))) ≤ ((voln*‘𝑋)‘𝐴) ↔ ∀𝑒 ∈ ℝ+ (((voln*‘𝑋)‘(𝐴 ∩ (𝐾(𝐻𝑋)𝑌))) + ((voln*‘𝑋)‘(𝐴 ∖ (𝐾(𝐻𝑋)𝑌)))) ≤ (((voln*‘𝑋)‘𝐴) + 𝑒)))
7268, 71mpbird 247 . 2 (𝜑 → (((voln*‘𝑋)‘(𝐴 ∩ (𝐾(𝐻𝑋)𝑌))) + ((voln*‘𝑋)‘(𝐴 ∖ (𝐾(𝐻𝑋)𝑌)))) ≤ ((voln*‘𝑋)‘𝐴))
7316, 72eqbrtrd 4826 1 (𝜑 → (((voln*‘𝑋)‘(𝐴 ∩ (𝐾(𝐻𝑋)𝑌))) +𝑒 ((voln*‘𝑋)‘(𝐴 ∖ (𝐾(𝐻𝑋)𝑌)))) ≤ ((voln*‘𝑋)‘𝐴))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∧ wa 383   = wceq 1632  ∃wex 1853   ∈ wcel 2139   ≠ wne 2932  ∀wral 3050  {crab 3054   ∖ cdif 3712   ∩ cin 3714   ⊆ wss 3715  ∅c0 4058  ifcif 4230  𝒫 cpw 4302  {csn 4321  ∪ ciun 4672   class class class wbr 4804   ↦ cmpt 4881   × cxp 5264   ∘ ccom 5270  ⟶wf 6045  ‘cfv 6049  (class class class)co 6813   ↦ cmpt2 6815  1st c1st 7331  2nd c2nd 7332   ↑𝑚 cmap 8023  Xcixp 8074  Fincfn 8121  ℝcr 10127  0cc0 10128   + caddc 10131  -∞cmnf 10264   ≤ cle 10267  ℕcn 11212  ℝ+crp 12025   +𝑒 cxad 12137  (,)cioo 12368  [,)cico 12370  ∏cprod 14834  volcvol 23432  Σ^csumge0 41082  voln*covoln 41256 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7114  ax-inf2 8711  ax-cnex 10184  ax-resscn 10185  ax-1cn 10186  ax-icn 10187  ax-addcl 10188  ax-addrcl 10189  ax-mulcl 10190  ax-mulrcl 10191  ax-mulcom 10192  ax-addass 10193  ax-mulass 10194  ax-distr 10195  ax-i2m1 10196  ax-1ne0 10197  ax-1rid 10198  ax-rnegex 10199  ax-rrecex 10200  ax-cnre 10201  ax-pre-lttri 10202  ax-pre-lttrn 10203  ax-pre-ltadd 10204  ax-pre-mulgt0 10205  ax-pre-sup 10206  ax-addf 10207  ax-mulf 10208 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-fal 1638  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-int 4628  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-se 5226  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-isom 6058  df-riota 6774  df-ov 6816  df-oprab 6817  df-mpt2 6818  df-of 7062  df-om 7231  df-1st 7333  df-2nd 7334  df-tpos 7521  df-wrecs 7576  df-recs 7637  df-rdg 7675  df-1o 7729  df-2o 7730  df-oadd 7733  df-er 7911  df-map 8025  df-pm 8026  df-ixp 8075  df-en 8122  df-dom 8123  df-sdom 8124  df-fin 8125  df-fi 8482  df-sup 8513  df-inf 8514  df-oi 8580  df-card 8955  df-cda 9182  df-pnf 10268  df-mnf 10269  df-xr 10270  df-ltxr 10271  df-le 10272  df-sub 10460  df-neg 10461  df-div 10877  df-nn 11213  df-2 11271  df-3 11272  df-4 11273  df-5 11274  df-6 11275  df-7 11276  df-8 11277  df-9 11278  df-n0 11485  df-z 11570  df-dec 11686  df-uz 11880  df-q 11982  df-rp 12026  df-xneg 12139  df-xadd 12140  df-xmul 12141  df-ioo 12372  df-ico 12374  df-icc 12375  df-fz 12520  df-fzo 12660  df-fl 12787  df-seq 12996  df-exp 13055  df-hash 13312  df-cj 14038  df-re 14039  df-im 14040  df-sqrt 14174  df-abs 14175  df-clim 14418  df-rlim 14419  df-sum 14616  df-prod 14835  df-struct 16061  df-ndx 16062  df-slot 16063  df-base 16065  df-sets 16066  df-ress 16067  df-plusg 16156  df-mulr 16157  df-starv 16158  df-tset 16162  df-ple 16163  df-ds 16166  df-unif 16167  df-rest 16285  df-0g 16304  df-topgen 16306  df-mgm 17443  df-sgrp 17485  df-mnd 17496  df-grp 17626  df-minusg 17627  df-subg 17792  df-cmn 18395  df-abl 18396  df-mgp 18690  df-ur 18702  df-ring 18749  df-cring 18750  df-oppr 18823  df-dvdsr 18841  df-unit 18842  df-invr 18872  df-dvr 18883  df-drng 18951  df-psmet 19940  df-xmet 19941  df-met 19942  df-bl 19943  df-mopn 19944  df-cnfld 19949  df-top 20901  df-topon 20918  df-bases 20952  df-cmp 21392  df-ovol 23433  df-vol 23434  df-sumge0 41083  df-ovoln 41257 This theorem is referenced by:  hspmbl  41349
 Copyright terms: Public domain W3C validator