Mathbox for Glauco Siliprandi < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hsphoival Structured version   Visualization version   GIF version

Theorem hsphoival 41313
 Description: 𝐻 is a function (that returns the representation of the right side of a half-open interval intersected with a half-space). Step (b) in Lemma 115B of [Fremlin1] p. 29. (Contributed by Glauco Siliprandi, 21-Nov-2020.)
Hypotheses
Ref Expression
hsphoival.h 𝐻 = (𝑥 ∈ ℝ ↦ (𝑎 ∈ (ℝ ↑𝑚 𝑋) ↦ (𝑗𝑋 ↦ if(𝑗𝑌, (𝑎𝑗), if((𝑎𝑗) ≤ 𝑥, (𝑎𝑗), 𝑥)))))
hsphoival.a (𝜑𝐴 ∈ ℝ)
hsphoival.x (𝜑𝑋𝑉)
hsphoival.b (𝜑𝐵:𝑋⟶ℝ)
hsphoival.k (𝜑𝐾𝑋)
Assertion
Ref Expression
hsphoival (𝜑 → (((𝐻𝐴)‘𝐵)‘𝐾) = if(𝐾𝑌, (𝐵𝐾), if((𝐵𝐾) ≤ 𝐴, (𝐵𝐾), 𝐴)))
Distinct variable groups:   𝐴,𝑎,𝑗,𝑥   𝐵,𝑎,𝑗   𝑗,𝐾   𝑋,𝑎,𝑗,𝑥   𝑌,𝑎,𝑗,𝑥   𝜑,𝑎,𝑗,𝑥
Allowed substitution hints:   𝐵(𝑥)   𝐻(𝑥,𝑗,𝑎)   𝐾(𝑥,𝑎)   𝑉(𝑥,𝑗,𝑎)

Proof of Theorem hsphoival
StepHypRef Expression
1 hsphoival.h . . . . 5 𝐻 = (𝑥 ∈ ℝ ↦ (𝑎 ∈ (ℝ ↑𝑚 𝑋) ↦ (𝑗𝑋 ↦ if(𝑗𝑌, (𝑎𝑗), if((𝑎𝑗) ≤ 𝑥, (𝑎𝑗), 𝑥)))))
21a1i 11 . . . 4 (𝜑𝐻 = (𝑥 ∈ ℝ ↦ (𝑎 ∈ (ℝ ↑𝑚 𝑋) ↦ (𝑗𝑋 ↦ if(𝑗𝑌, (𝑎𝑗), if((𝑎𝑗) ≤ 𝑥, (𝑎𝑗), 𝑥))))))
3 breq2 4790 . . . . . . . . 9 (𝑥 = 𝐴 → ((𝑎𝑗) ≤ 𝑥 ↔ (𝑎𝑗) ≤ 𝐴))
4 id 22 . . . . . . . . 9 (𝑥 = 𝐴𝑥 = 𝐴)
53, 4ifbieq2d 4250 . . . . . . . 8 (𝑥 = 𝐴 → if((𝑎𝑗) ≤ 𝑥, (𝑎𝑗), 𝑥) = if((𝑎𝑗) ≤ 𝐴, (𝑎𝑗), 𝐴))
65ifeq2d 4244 . . . . . . 7 (𝑥 = 𝐴 → if(𝑗𝑌, (𝑎𝑗), if((𝑎𝑗) ≤ 𝑥, (𝑎𝑗), 𝑥)) = if(𝑗𝑌, (𝑎𝑗), if((𝑎𝑗) ≤ 𝐴, (𝑎𝑗), 𝐴)))
76mpteq2dv 4879 . . . . . 6 (𝑥 = 𝐴 → (𝑗𝑋 ↦ if(𝑗𝑌, (𝑎𝑗), if((𝑎𝑗) ≤ 𝑥, (𝑎𝑗), 𝑥))) = (𝑗𝑋 ↦ if(𝑗𝑌, (𝑎𝑗), if((𝑎𝑗) ≤ 𝐴, (𝑎𝑗), 𝐴))))
87mpteq2dv 4879 . . . . 5 (𝑥 = 𝐴 → (𝑎 ∈ (ℝ ↑𝑚 𝑋) ↦ (𝑗𝑋 ↦ if(𝑗𝑌, (𝑎𝑗), if((𝑎𝑗) ≤ 𝑥, (𝑎𝑗), 𝑥)))) = (𝑎 ∈ (ℝ ↑𝑚 𝑋) ↦ (𝑗𝑋 ↦ if(𝑗𝑌, (𝑎𝑗), if((𝑎𝑗) ≤ 𝐴, (𝑎𝑗), 𝐴)))))
98adantl 467 . . . 4 ((𝜑𝑥 = 𝐴) → (𝑎 ∈ (ℝ ↑𝑚 𝑋) ↦ (𝑗𝑋 ↦ if(𝑗𝑌, (𝑎𝑗), if((𝑎𝑗) ≤ 𝑥, (𝑎𝑗), 𝑥)))) = (𝑎 ∈ (ℝ ↑𝑚 𝑋) ↦ (𝑗𝑋 ↦ if(𝑗𝑌, (𝑎𝑗), if((𝑎𝑗) ≤ 𝐴, (𝑎𝑗), 𝐴)))))
10 hsphoival.a . . . 4 (𝜑𝐴 ∈ ℝ)
11 ovex 6823 . . . . . 6 (ℝ ↑𝑚 𝑋) ∈ V
1211mptex 6630 . . . . 5 (𝑎 ∈ (ℝ ↑𝑚 𝑋) ↦ (𝑗𝑋 ↦ if(𝑗𝑌, (𝑎𝑗), if((𝑎𝑗) ≤ 𝐴, (𝑎𝑗), 𝐴)))) ∈ V
1312a1i 11 . . . 4 (𝜑 → (𝑎 ∈ (ℝ ↑𝑚 𝑋) ↦ (𝑗𝑋 ↦ if(𝑗𝑌, (𝑎𝑗), if((𝑎𝑗) ≤ 𝐴, (𝑎𝑗), 𝐴)))) ∈ V)
142, 9, 10, 13fvmptd 6430 . . 3 (𝜑 → (𝐻𝐴) = (𝑎 ∈ (ℝ ↑𝑚 𝑋) ↦ (𝑗𝑋 ↦ if(𝑗𝑌, (𝑎𝑗), if((𝑎𝑗) ≤ 𝐴, (𝑎𝑗), 𝐴)))))
15 fveq1 6331 . . . . . 6 (𝑎 = 𝐵 → (𝑎𝑗) = (𝐵𝑗))
1615breq1d 4796 . . . . . . 7 (𝑎 = 𝐵 → ((𝑎𝑗) ≤ 𝐴 ↔ (𝐵𝑗) ≤ 𝐴))
1716, 15ifbieq1d 4248 . . . . . 6 (𝑎 = 𝐵 → if((𝑎𝑗) ≤ 𝐴, (𝑎𝑗), 𝐴) = if((𝐵𝑗) ≤ 𝐴, (𝐵𝑗), 𝐴))
1815, 17ifeq12d 4245 . . . . 5 (𝑎 = 𝐵 → if(𝑗𝑌, (𝑎𝑗), if((𝑎𝑗) ≤ 𝐴, (𝑎𝑗), 𝐴)) = if(𝑗𝑌, (𝐵𝑗), if((𝐵𝑗) ≤ 𝐴, (𝐵𝑗), 𝐴)))
1918mpteq2dv 4879 . . . 4 (𝑎 = 𝐵 → (𝑗𝑋 ↦ if(𝑗𝑌, (𝑎𝑗), if((𝑎𝑗) ≤ 𝐴, (𝑎𝑗), 𝐴))) = (𝑗𝑋 ↦ if(𝑗𝑌, (𝐵𝑗), if((𝐵𝑗) ≤ 𝐴, (𝐵𝑗), 𝐴))))
2019adantl 467 . . 3 ((𝜑𝑎 = 𝐵) → (𝑗𝑋 ↦ if(𝑗𝑌, (𝑎𝑗), if((𝑎𝑗) ≤ 𝐴, (𝑎𝑗), 𝐴))) = (𝑗𝑋 ↦ if(𝑗𝑌, (𝐵𝑗), if((𝐵𝑗) ≤ 𝐴, (𝐵𝑗), 𝐴))))
21 hsphoival.b . . . 4 (𝜑𝐵:𝑋⟶ℝ)
22 reex 10229 . . . . . . 7 ℝ ∈ V
2322a1i 11 . . . . . 6 (𝜑 → ℝ ∈ V)
24 hsphoival.x . . . . . 6 (𝜑𝑋𝑉)
2523, 24jca 501 . . . . 5 (𝜑 → (ℝ ∈ V ∧ 𝑋𝑉))
26 elmapg 8022 . . . . 5 ((ℝ ∈ V ∧ 𝑋𝑉) → (𝐵 ∈ (ℝ ↑𝑚 𝑋) ↔ 𝐵:𝑋⟶ℝ))
2725, 26syl 17 . . . 4 (𝜑 → (𝐵 ∈ (ℝ ↑𝑚 𝑋) ↔ 𝐵:𝑋⟶ℝ))
2821, 27mpbird 247 . . 3 (𝜑𝐵 ∈ (ℝ ↑𝑚 𝑋))
29 mptexg 6628 . . . 4 (𝑋𝑉 → (𝑗𝑋 ↦ if(𝑗𝑌, (𝐵𝑗), if((𝐵𝑗) ≤ 𝐴, (𝐵𝑗), 𝐴))) ∈ V)
3024, 29syl 17 . . 3 (𝜑 → (𝑗𝑋 ↦ if(𝑗𝑌, (𝐵𝑗), if((𝐵𝑗) ≤ 𝐴, (𝐵𝑗), 𝐴))) ∈ V)
3114, 20, 28, 30fvmptd 6430 . 2 (𝜑 → ((𝐻𝐴)‘𝐵) = (𝑗𝑋 ↦ if(𝑗𝑌, (𝐵𝑗), if((𝐵𝑗) ≤ 𝐴, (𝐵𝑗), 𝐴))))
32 eleq1 2838 . . . 4 (𝑗 = 𝐾 → (𝑗𝑌𝐾𝑌))
33 fveq2 6332 . . . 4 (𝑗 = 𝐾 → (𝐵𝑗) = (𝐵𝐾))
3433breq1d 4796 . . . . 5 (𝑗 = 𝐾 → ((𝐵𝑗) ≤ 𝐴 ↔ (𝐵𝐾) ≤ 𝐴))
3534, 33ifbieq1d 4248 . . . 4 (𝑗 = 𝐾 → if((𝐵𝑗) ≤ 𝐴, (𝐵𝑗), 𝐴) = if((𝐵𝐾) ≤ 𝐴, (𝐵𝐾), 𝐴))
3632, 33, 35ifbieq12d 4252 . . 3 (𝑗 = 𝐾 → if(𝑗𝑌, (𝐵𝑗), if((𝐵𝑗) ≤ 𝐴, (𝐵𝑗), 𝐴)) = if(𝐾𝑌, (𝐵𝐾), if((𝐵𝐾) ≤ 𝐴, (𝐵𝐾), 𝐴)))
3736adantl 467 . 2 ((𝜑𝑗 = 𝐾) → if(𝑗𝑌, (𝐵𝑗), if((𝐵𝑗) ≤ 𝐴, (𝐵𝑗), 𝐴)) = if(𝐾𝑌, (𝐵𝐾), if((𝐵𝐾) ≤ 𝐴, (𝐵𝐾), 𝐴)))
38 hsphoival.k . 2 (𝜑𝐾𝑋)
3921, 38ffvelrnd 6503 . . 3 (𝜑 → (𝐵𝐾) ∈ ℝ)
4039, 10ifcld 4270 . . 3 (𝜑 → if((𝐵𝐾) ≤ 𝐴, (𝐵𝐾), 𝐴) ∈ ℝ)
41 ifexg 4296 . . 3 (((𝐵𝐾) ∈ ℝ ∧ if((𝐵𝐾) ≤ 𝐴, (𝐵𝐾), 𝐴) ∈ ℝ) → if(𝐾𝑌, (𝐵𝐾), if((𝐵𝐾) ≤ 𝐴, (𝐵𝐾), 𝐴)) ∈ V)
4239, 40, 41syl2anc 573 . 2 (𝜑 → if(𝐾𝑌, (𝐵𝐾), if((𝐵𝐾) ≤ 𝐴, (𝐵𝐾), 𝐴)) ∈ V)
4331, 37, 38, 42fvmptd 6430 1 (𝜑 → (((𝐻𝐴)‘𝐵)‘𝐾) = if(𝐾𝑌, (𝐵𝐾), if((𝐵𝐾) ≤ 𝐴, (𝐵𝐾), 𝐴)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∧ wa 382   = wceq 1631   ∈ wcel 2145  Vcvv 3351  ifcif 4225   class class class wbr 4786   ↦ cmpt 4863  ⟶wf 6027  ‘cfv 6031  (class class class)co 6793   ↑𝑚 cmap 8009  ℝcr 10137   ≤ cle 10277 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4904  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7096  ax-cnex 10194  ax-resscn 10195 This theorem depends on definitions:  df-bi 197  df-an 383  df-or 835  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-ral 3066  df-rex 3067  df-reu 3068  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-op 4323  df-uni 4575  df-iun 4656  df-br 4787  df-opab 4847  df-mpt 4864  df-id 5157  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-ov 6796  df-oprab 6797  df-mpt2 6798  df-map 8011 This theorem is referenced by:  hsphoidmvle2  41319  hsphoidmvle  41320  hoidmvlelem2  41330  hspmbllem1  41360
 Copyright terms: Public domain W3C validator