![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > hsmexlem6 | Structured version Visualization version GIF version |
Description: Lemma for hsmex 9292. (Contributed by Stefan O'Rear, 14-Feb-2015.) |
Ref | Expression |
---|---|
hsmexlem4.x | ⊢ 𝑋 ∈ V |
hsmexlem4.h | ⊢ 𝐻 = (rec((𝑧 ∈ V ↦ (har‘𝒫 (𝑋 × 𝑧))), (har‘𝒫 𝑋)) ↾ ω) |
hsmexlem4.u | ⊢ 𝑈 = (𝑥 ∈ V ↦ (rec((𝑦 ∈ V ↦ ∪ 𝑦), 𝑥) ↾ ω)) |
hsmexlem4.s | ⊢ 𝑆 = {𝑎 ∈ ∪ (𝑅1 “ On) ∣ ∀𝑏 ∈ (TC‘{𝑎})𝑏 ≼ 𝑋} |
hsmexlem4.o | ⊢ 𝑂 = OrdIso( E , (rank “ ((𝑈‘𝑑)‘𝑐))) |
Ref | Expression |
---|---|
hsmexlem6 | ⊢ 𝑆 ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvex 6239 | . 2 ⊢ (𝑅1‘(har‘𝒫 (ω × ∪ ran 𝐻))) ∈ V | |
2 | hsmexlem4.x | . . . . 5 ⊢ 𝑋 ∈ V | |
3 | hsmexlem4.h | . . . . 5 ⊢ 𝐻 = (rec((𝑧 ∈ V ↦ (har‘𝒫 (𝑋 × 𝑧))), (har‘𝒫 𝑋)) ↾ ω) | |
4 | hsmexlem4.u | . . . . 5 ⊢ 𝑈 = (𝑥 ∈ V ↦ (rec((𝑦 ∈ V ↦ ∪ 𝑦), 𝑥) ↾ ω)) | |
5 | hsmexlem4.s | . . . . 5 ⊢ 𝑆 = {𝑎 ∈ ∪ (𝑅1 “ On) ∣ ∀𝑏 ∈ (TC‘{𝑎})𝑏 ≼ 𝑋} | |
6 | hsmexlem4.o | . . . . 5 ⊢ 𝑂 = OrdIso( E , (rank “ ((𝑈‘𝑑)‘𝑐))) | |
7 | 2, 3, 4, 5, 6 | hsmexlem5 9290 | . . . 4 ⊢ (𝑑 ∈ 𝑆 → (rank‘𝑑) ∈ (har‘𝒫 (ω × ∪ ran 𝐻))) |
8 | ssrab2 3720 | . . . . . . 7 ⊢ {𝑎 ∈ ∪ (𝑅1 “ On) ∣ ∀𝑏 ∈ (TC‘{𝑎})𝑏 ≼ 𝑋} ⊆ ∪ (𝑅1 “ On) | |
9 | 5, 8 | eqsstri 3668 | . . . . . 6 ⊢ 𝑆 ⊆ ∪ (𝑅1 “ On) |
10 | 9 | sseli 3632 | . . . . 5 ⊢ (𝑑 ∈ 𝑆 → 𝑑 ∈ ∪ (𝑅1 “ On)) |
11 | harcl 8507 | . . . . . 6 ⊢ (har‘𝒫 (ω × ∪ ran 𝐻)) ∈ On | |
12 | r1fnon 8668 | . . . . . . 7 ⊢ 𝑅1 Fn On | |
13 | fndm 6028 | . . . . . . 7 ⊢ (𝑅1 Fn On → dom 𝑅1 = On) | |
14 | 12, 13 | ax-mp 5 | . . . . . 6 ⊢ dom 𝑅1 = On |
15 | 11, 14 | eleqtrri 2729 | . . . . 5 ⊢ (har‘𝒫 (ω × ∪ ran 𝐻)) ∈ dom 𝑅1 |
16 | rankr1ag 8703 | . . . . 5 ⊢ ((𝑑 ∈ ∪ (𝑅1 “ On) ∧ (har‘𝒫 (ω × ∪ ran 𝐻)) ∈ dom 𝑅1) → (𝑑 ∈ (𝑅1‘(har‘𝒫 (ω × ∪ ran 𝐻))) ↔ (rank‘𝑑) ∈ (har‘𝒫 (ω × ∪ ran 𝐻)))) | |
17 | 10, 15, 16 | sylancl 695 | . . . 4 ⊢ (𝑑 ∈ 𝑆 → (𝑑 ∈ (𝑅1‘(har‘𝒫 (ω × ∪ ran 𝐻))) ↔ (rank‘𝑑) ∈ (har‘𝒫 (ω × ∪ ran 𝐻)))) |
18 | 7, 17 | mpbird 247 | . . 3 ⊢ (𝑑 ∈ 𝑆 → 𝑑 ∈ (𝑅1‘(har‘𝒫 (ω × ∪ ran 𝐻)))) |
19 | 18 | ssriv 3640 | . 2 ⊢ 𝑆 ⊆ (𝑅1‘(har‘𝒫 (ω × ∪ ran 𝐻))) |
20 | 1, 19 | ssexi 4836 | 1 ⊢ 𝑆 ∈ V |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 196 = wceq 1523 ∈ wcel 2030 ∀wral 2941 {crab 2945 Vcvv 3231 𝒫 cpw 4191 {csn 4210 ∪ cuni 4468 class class class wbr 4685 ↦ cmpt 4762 E cep 5057 × cxp 5141 dom cdm 5143 ran crn 5144 ↾ cres 5145 “ cima 5146 Oncon0 5761 Fn wfn 5921 ‘cfv 5926 ωcom 7107 reccrdg 7550 ≼ cdom 7995 OrdIsocoi 8455 harchar 8502 TCctc 8650 𝑅1cr1 8663 rankcrnk 8664 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-rep 4804 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 ax-inf2 8576 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1055 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-ral 2946 df-rex 2947 df-reu 2948 df-rmo 2949 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-pss 3623 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-tp 4215 df-op 4217 df-uni 4469 df-int 4508 df-iun 4554 df-br 4686 df-opab 4746 df-mpt 4763 df-tr 4786 df-id 5053 df-eprel 5058 df-po 5064 df-so 5065 df-fr 5102 df-se 5103 df-we 5104 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-pred 5718 df-ord 5764 df-on 5765 df-lim 5766 df-suc 5767 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-fv 5934 df-isom 5935 df-riota 6651 df-om 7108 df-1st 7210 df-2nd 7211 df-wrecs 7452 df-smo 7488 df-recs 7513 df-rdg 7551 df-er 7787 df-en 7998 df-dom 7999 df-sdom 8000 df-oi 8456 df-har 8504 df-wdom 8505 df-tc 8651 df-r1 8665 df-rank 8666 |
This theorem is referenced by: hsmex 9292 |
Copyright terms: Public domain | W3C validator |