MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hsmexlem4 Structured version   Visualization version   GIF version

Theorem hsmexlem4 9289
Description: Lemma for hsmex 9292. The core induction, establishing bounds on the order types of iterated unions of the initial set. (Contributed by Stefan O'Rear, 14-Feb-2015.)
Hypotheses
Ref Expression
hsmexlem4.x 𝑋 ∈ V
hsmexlem4.h 𝐻 = (rec((𝑧 ∈ V ↦ (har‘𝒫 (𝑋 × 𝑧))), (har‘𝒫 𝑋)) ↾ ω)
hsmexlem4.u 𝑈 = (𝑥 ∈ V ↦ (rec((𝑦 ∈ V ↦ 𝑦), 𝑥) ↾ ω))
hsmexlem4.s 𝑆 = {𝑎 (𝑅1 “ On) ∣ ∀𝑏 ∈ (TC‘{𝑎})𝑏𝑋}
hsmexlem4.o 𝑂 = OrdIso( E , (rank “ ((𝑈𝑑)‘𝑐)))
Assertion
Ref Expression
hsmexlem4 ((𝑐 ∈ ω ∧ 𝑑𝑆) → dom 𝑂 ∈ (𝐻𝑐))
Distinct variable groups:   𝑎,𝑐,𝑑,𝐻   𝑆,𝑐,𝑑   𝑈,𝑐,𝑑   𝑎,𝑏,𝑧,𝑋   𝑥,𝑎,𝑦   𝑏,𝑐,𝑑,𝑥,𝑦,𝑧
Allowed substitution hints:   𝑆(𝑥,𝑦,𝑧,𝑎,𝑏)   𝑈(𝑥,𝑦,𝑧,𝑎,𝑏)   𝐻(𝑥,𝑦,𝑧,𝑏)   𝑂(𝑥,𝑦,𝑧,𝑎,𝑏,𝑐,𝑑)   𝑋(𝑥,𝑦,𝑐,𝑑)

Proof of Theorem hsmexlem4
Dummy variables 𝑒 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 hsmexlem4.o . . . . . . 7 𝑂 = OrdIso( E , (rank “ ((𝑈𝑑)‘𝑐)))
2 fveq2 6229 . . . . . . . . 9 (𝑐 = ∅ → ((𝑈𝑑)‘𝑐) = ((𝑈𝑑)‘∅))
32imaeq2d 5501 . . . . . . . 8 (𝑐 = ∅ → (rank “ ((𝑈𝑑)‘𝑐)) = (rank “ ((𝑈𝑑)‘∅)))
4 oieq2 8459 . . . . . . . 8 ((rank “ ((𝑈𝑑)‘𝑐)) = (rank “ ((𝑈𝑑)‘∅)) → OrdIso( E , (rank “ ((𝑈𝑑)‘𝑐))) = OrdIso( E , (rank “ ((𝑈𝑑)‘∅))))
53, 4syl 17 . . . . . . 7 (𝑐 = ∅ → OrdIso( E , (rank “ ((𝑈𝑑)‘𝑐))) = OrdIso( E , (rank “ ((𝑈𝑑)‘∅))))
61, 5syl5eq 2697 . . . . . 6 (𝑐 = ∅ → 𝑂 = OrdIso( E , (rank “ ((𝑈𝑑)‘∅))))
76dmeqd 5358 . . . . 5 (𝑐 = ∅ → dom 𝑂 = dom OrdIso( E , (rank “ ((𝑈𝑑)‘∅))))
8 fveq2 6229 . . . . 5 (𝑐 = ∅ → (𝐻𝑐) = (𝐻‘∅))
97, 8eleq12d 2724 . . . 4 (𝑐 = ∅ → (dom 𝑂 ∈ (𝐻𝑐) ↔ dom OrdIso( E , (rank “ ((𝑈𝑑)‘∅))) ∈ (𝐻‘∅)))
109ralbidv 3015 . . 3 (𝑐 = ∅ → (∀𝑑𝑆 dom 𝑂 ∈ (𝐻𝑐) ↔ ∀𝑑𝑆 dom OrdIso( E , (rank “ ((𝑈𝑑)‘∅))) ∈ (𝐻‘∅)))
11 fveq2 6229 . . . . . . . . 9 (𝑐 = 𝑒 → ((𝑈𝑑)‘𝑐) = ((𝑈𝑑)‘𝑒))
1211imaeq2d 5501 . . . . . . . 8 (𝑐 = 𝑒 → (rank “ ((𝑈𝑑)‘𝑐)) = (rank “ ((𝑈𝑑)‘𝑒)))
13 oieq2 8459 . . . . . . . 8 ((rank “ ((𝑈𝑑)‘𝑐)) = (rank “ ((𝑈𝑑)‘𝑒)) → OrdIso( E , (rank “ ((𝑈𝑑)‘𝑐))) = OrdIso( E , (rank “ ((𝑈𝑑)‘𝑒))))
1412, 13syl 17 . . . . . . 7 (𝑐 = 𝑒 → OrdIso( E , (rank “ ((𝑈𝑑)‘𝑐))) = OrdIso( E , (rank “ ((𝑈𝑑)‘𝑒))))
151, 14syl5eq 2697 . . . . . 6 (𝑐 = 𝑒𝑂 = OrdIso( E , (rank “ ((𝑈𝑑)‘𝑒))))
1615dmeqd 5358 . . . . 5 (𝑐 = 𝑒 → dom 𝑂 = dom OrdIso( E , (rank “ ((𝑈𝑑)‘𝑒))))
17 fveq2 6229 . . . . 5 (𝑐 = 𝑒 → (𝐻𝑐) = (𝐻𝑒))
1816, 17eleq12d 2724 . . . 4 (𝑐 = 𝑒 → (dom 𝑂 ∈ (𝐻𝑐) ↔ dom OrdIso( E , (rank “ ((𝑈𝑑)‘𝑒))) ∈ (𝐻𝑒)))
1918ralbidv 3015 . . 3 (𝑐 = 𝑒 → (∀𝑑𝑆 dom 𝑂 ∈ (𝐻𝑐) ↔ ∀𝑑𝑆 dom OrdIso( E , (rank “ ((𝑈𝑑)‘𝑒))) ∈ (𝐻𝑒)))
20 fveq2 6229 . . . . . . . . 9 (𝑐 = suc 𝑒 → ((𝑈𝑑)‘𝑐) = ((𝑈𝑑)‘suc 𝑒))
2120imaeq2d 5501 . . . . . . . 8 (𝑐 = suc 𝑒 → (rank “ ((𝑈𝑑)‘𝑐)) = (rank “ ((𝑈𝑑)‘suc 𝑒)))
22 oieq2 8459 . . . . . . . 8 ((rank “ ((𝑈𝑑)‘𝑐)) = (rank “ ((𝑈𝑑)‘suc 𝑒)) → OrdIso( E , (rank “ ((𝑈𝑑)‘𝑐))) = OrdIso( E , (rank “ ((𝑈𝑑)‘suc 𝑒))))
2321, 22syl 17 . . . . . . 7 (𝑐 = suc 𝑒 → OrdIso( E , (rank “ ((𝑈𝑑)‘𝑐))) = OrdIso( E , (rank “ ((𝑈𝑑)‘suc 𝑒))))
241, 23syl5eq 2697 . . . . . 6 (𝑐 = suc 𝑒𝑂 = OrdIso( E , (rank “ ((𝑈𝑑)‘suc 𝑒))))
2524dmeqd 5358 . . . . 5 (𝑐 = suc 𝑒 → dom 𝑂 = dom OrdIso( E , (rank “ ((𝑈𝑑)‘suc 𝑒))))
26 fveq2 6229 . . . . 5 (𝑐 = suc 𝑒 → (𝐻𝑐) = (𝐻‘suc 𝑒))
2725, 26eleq12d 2724 . . . 4 (𝑐 = suc 𝑒 → (dom 𝑂 ∈ (𝐻𝑐) ↔ dom OrdIso( E , (rank “ ((𝑈𝑑)‘suc 𝑒))) ∈ (𝐻‘suc 𝑒)))
2827ralbidv 3015 . . 3 (𝑐 = suc 𝑒 → (∀𝑑𝑆 dom 𝑂 ∈ (𝐻𝑐) ↔ ∀𝑑𝑆 dom OrdIso( E , (rank “ ((𝑈𝑑)‘suc 𝑒))) ∈ (𝐻‘suc 𝑒)))
29 imassrn 5512 . . . . . . 7 (rank “ ((𝑈𝑑)‘∅)) ⊆ ran rank
30 rankf 8695 . . . . . . . 8 rank: (𝑅1 “ On)⟶On
31 frn 6091 . . . . . . . 8 (rank: (𝑅1 “ On)⟶On → ran rank ⊆ On)
3230, 31ax-mp 5 . . . . . . 7 ran rank ⊆ On
3329, 32sstri 3645 . . . . . 6 (rank “ ((𝑈𝑑)‘∅)) ⊆ On
34 vex 3234 . . . . . . . . 9 𝑑 ∈ V
35 hsmexlem4.u . . . . . . . . . 10 𝑈 = (𝑥 ∈ V ↦ (rec((𝑦 ∈ V ↦ 𝑦), 𝑥) ↾ ω))
3635ituni0 9278 . . . . . . . . 9 (𝑑 ∈ V → ((𝑈𝑑)‘∅) = 𝑑)
3734, 36ax-mp 5 . . . . . . . 8 ((𝑈𝑑)‘∅) = 𝑑
3837imaeq2i 5499 . . . . . . 7 (rank “ ((𝑈𝑑)‘∅)) = (rank “ 𝑑)
39 ffun 6086 . . . . . . . . . 10 (rank: (𝑅1 “ On)⟶On → Fun rank)
4030, 39ax-mp 5 . . . . . . . . 9 Fun rank
41 wdomimag 8533 . . . . . . . . 9 ((Fun rank ∧ 𝑑 ∈ V) → (rank “ 𝑑) ≼* 𝑑)
4240, 34, 41mp2an 708 . . . . . . . 8 (rank “ 𝑑) ≼* 𝑑
43 sneq 4220 . . . . . . . . . . . . 13 (𝑎 = 𝑑 → {𝑎} = {𝑑})
4443fveq2d 6233 . . . . . . . . . . . 12 (𝑎 = 𝑑 → (TC‘{𝑎}) = (TC‘{𝑑}))
4544raleqdv 3174 . . . . . . . . . . 11 (𝑎 = 𝑑 → (∀𝑏 ∈ (TC‘{𝑎})𝑏𝑋 ↔ ∀𝑏 ∈ (TC‘{𝑑})𝑏𝑋))
46 hsmexlem4.s . . . . . . . . . . 11 𝑆 = {𝑎 (𝑅1 “ On) ∣ ∀𝑏 ∈ (TC‘{𝑎})𝑏𝑋}
4745, 46elrab2 3399 . . . . . . . . . 10 (𝑑𝑆 ↔ (𝑑 (𝑅1 “ On) ∧ ∀𝑏 ∈ (TC‘{𝑑})𝑏𝑋))
4847simprbi 479 . . . . . . . . 9 (𝑑𝑆 → ∀𝑏 ∈ (TC‘{𝑑})𝑏𝑋)
49 snex 4938 . . . . . . . . . . . 12 {𝑑} ∈ V
50 tcid 8653 . . . . . . . . . . . 12 ({𝑑} ∈ V → {𝑑} ⊆ (TC‘{𝑑}))
5149, 50ax-mp 5 . . . . . . . . . . 11 {𝑑} ⊆ (TC‘{𝑑})
52 vsnid 4242 . . . . . . . . . . 11 𝑑 ∈ {𝑑}
5351, 52sselii 3633 . . . . . . . . . 10 𝑑 ∈ (TC‘{𝑑})
54 breq1 4688 . . . . . . . . . . 11 (𝑏 = 𝑑 → (𝑏𝑋𝑑𝑋))
5554rspcv 3336 . . . . . . . . . 10 (𝑑 ∈ (TC‘{𝑑}) → (∀𝑏 ∈ (TC‘{𝑑})𝑏𝑋𝑑𝑋))
5653, 55ax-mp 5 . . . . . . . . 9 (∀𝑏 ∈ (TC‘{𝑑})𝑏𝑋𝑑𝑋)
57 domwdom 8520 . . . . . . . . 9 (𝑑𝑋𝑑* 𝑋)
5848, 56, 573syl 18 . . . . . . . 8 (𝑑𝑆𝑑* 𝑋)
59 wdomtr 8521 . . . . . . . 8 (((rank “ 𝑑) ≼* 𝑑𝑑* 𝑋) → (rank “ 𝑑) ≼* 𝑋)
6042, 58, 59sylancr 696 . . . . . . 7 (𝑑𝑆 → (rank “ 𝑑) ≼* 𝑋)
6138, 60syl5eqbr 4720 . . . . . 6 (𝑑𝑆 → (rank “ ((𝑈𝑑)‘∅)) ≼* 𝑋)
62 eqid 2651 . . . . . . 7 OrdIso( E , (rank “ ((𝑈𝑑)‘∅))) = OrdIso( E , (rank “ ((𝑈𝑑)‘∅)))
6362hsmexlem1 9286 . . . . . 6 (((rank “ ((𝑈𝑑)‘∅)) ⊆ On ∧ (rank “ ((𝑈𝑑)‘∅)) ≼* 𝑋) → dom OrdIso( E , (rank “ ((𝑈𝑑)‘∅))) ∈ (har‘𝒫 𝑋))
6433, 61, 63sylancr 696 . . . . 5 (𝑑𝑆 → dom OrdIso( E , (rank “ ((𝑈𝑑)‘∅))) ∈ (har‘𝒫 𝑋))
65 hsmexlem4.h . . . . . 6 𝐻 = (rec((𝑧 ∈ V ↦ (har‘𝒫 (𝑋 × 𝑧))), (har‘𝒫 𝑋)) ↾ ω)
6665hsmexlem7 9283 . . . . 5 (𝐻‘∅) = (har‘𝒫 𝑋)
6764, 66syl6eleqr 2741 . . . 4 (𝑑𝑆 → dom OrdIso( E , (rank “ ((𝑈𝑑)‘∅))) ∈ (𝐻‘∅))
6867rgen 2951 . . 3 𝑑𝑆 dom OrdIso( E , (rank “ ((𝑈𝑑)‘∅))) ∈ (𝐻‘∅)
69 nfra1 2970 . . . . . 6 𝑑𝑑𝑆 dom OrdIso( E , (rank “ ((𝑈𝑑)‘𝑒))) ∈ (𝐻𝑒)
70 nfv 1883 . . . . . 6 𝑑 𝑒 ∈ ω
7169, 70nfan 1868 . . . . 5 𝑑(∀𝑑𝑆 dom OrdIso( E , (rank “ ((𝑈𝑑)‘𝑒))) ∈ (𝐻𝑒) ∧ 𝑒 ∈ ω)
7235ituniiun 9282 . . . . . . . . . . . . 13 (𝑑 ∈ V → ((𝑈𝑑)‘suc 𝑒) = 𝑓𝑑 ((𝑈𝑓)‘𝑒))
7334, 72ax-mp 5 . . . . . . . . . . . 12 ((𝑈𝑑)‘suc 𝑒) = 𝑓𝑑 ((𝑈𝑓)‘𝑒)
7473imaeq2i 5499 . . . . . . . . . . 11 (rank “ ((𝑈𝑑)‘suc 𝑒)) = (rank “ 𝑓𝑑 ((𝑈𝑓)‘𝑒))
75 imaiun 6543 . . . . . . . . . . 11 (rank “ 𝑓𝑑 ((𝑈𝑓)‘𝑒)) = 𝑓𝑑 (rank “ ((𝑈𝑓)‘𝑒))
7674, 75eqtri 2673 . . . . . . . . . 10 (rank “ ((𝑈𝑑)‘suc 𝑒)) = 𝑓𝑑 (rank “ ((𝑈𝑓)‘𝑒))
77 oieq2 8459 . . . . . . . . . 10 ((rank “ ((𝑈𝑑)‘suc 𝑒)) = 𝑓𝑑 (rank “ ((𝑈𝑓)‘𝑒)) → OrdIso( E , (rank “ ((𝑈𝑑)‘suc 𝑒))) = OrdIso( E , 𝑓𝑑 (rank “ ((𝑈𝑓)‘𝑒))))
7876, 77ax-mp 5 . . . . . . . . 9 OrdIso( E , (rank “ ((𝑈𝑑)‘suc 𝑒))) = OrdIso( E , 𝑓𝑑 (rank “ ((𝑈𝑓)‘𝑒)))
7978dmeqi 5357 . . . . . . . 8 dom OrdIso( E , (rank “ ((𝑈𝑑)‘suc 𝑒))) = dom OrdIso( E , 𝑓𝑑 (rank “ ((𝑈𝑓)‘𝑒)))
8058ad2antll 765 . . . . . . . . 9 ((∀𝑑𝑆 dom OrdIso( E , (rank “ ((𝑈𝑑)‘𝑒))) ∈ (𝐻𝑒) ∧ (𝑒 ∈ ω ∧ 𝑑𝑆)) → 𝑑* 𝑋)
8165hsmexlem9 9285 . . . . . . . . . 10 (𝑒 ∈ ω → (𝐻𝑒) ∈ On)
8281ad2antrl 764 . . . . . . . . 9 ((∀𝑑𝑆 dom OrdIso( E , (rank “ ((𝑈𝑑)‘𝑒))) ∈ (𝐻𝑒) ∧ (𝑒 ∈ ω ∧ 𝑑𝑆)) → (𝐻𝑒) ∈ On)
83 ssrab2 3720 . . . . . . . . . . . . . . . . . . 19 {𝑎 (𝑅1 “ On) ∣ ∀𝑏 ∈ (TC‘{𝑎})𝑏𝑋} ⊆ (𝑅1 “ On)
8446, 83eqsstri 3668 . . . . . . . . . . . . . . . . . 18 𝑆 (𝑅1 “ On)
8584sseli 3632 . . . . . . . . . . . . . . . . 17 (𝑑𝑆𝑑 (𝑅1 “ On))
86 r1elssi 8706 . . . . . . . . . . . . . . . . 17 (𝑑 (𝑅1 “ On) → 𝑑 (𝑅1 “ On))
8785, 86syl 17 . . . . . . . . . . . . . . . 16 (𝑑𝑆𝑑 (𝑅1 “ On))
8887sselda 3636 . . . . . . . . . . . . . . 15 ((𝑑𝑆𝑓𝑑) → 𝑓 (𝑅1 “ On))
89 snssi 4371 . . . . . . . . . . . . . . . . . . 19 (𝑓𝑑 → {𝑓} ⊆ 𝑑)
9034tcss 8658 . . . . . . . . . . . . . . . . . . 19 ({𝑓} ⊆ 𝑑 → (TC‘{𝑓}) ⊆ (TC‘𝑑))
9189, 90syl 17 . . . . . . . . . . . . . . . . . 18 (𝑓𝑑 → (TC‘{𝑓}) ⊆ (TC‘𝑑))
9249tcel 8659 . . . . . . . . . . . . . . . . . . 19 (𝑑 ∈ {𝑑} → (TC‘𝑑) ⊆ (TC‘{𝑑}))
9352, 92mp1i 13 . . . . . . . . . . . . . . . . . 18 (𝑓𝑑 → (TC‘𝑑) ⊆ (TC‘{𝑑}))
9491, 93sstrd 3646 . . . . . . . . . . . . . . . . 17 (𝑓𝑑 → (TC‘{𝑓}) ⊆ (TC‘{𝑑}))
95 ssralv 3699 . . . . . . . . . . . . . . . . 17 ((TC‘{𝑓}) ⊆ (TC‘{𝑑}) → (∀𝑏 ∈ (TC‘{𝑑})𝑏𝑋 → ∀𝑏 ∈ (TC‘{𝑓})𝑏𝑋))
9694, 95syl 17 . . . . . . . . . . . . . . . 16 (𝑓𝑑 → (∀𝑏 ∈ (TC‘{𝑑})𝑏𝑋 → ∀𝑏 ∈ (TC‘{𝑓})𝑏𝑋))
9748, 96mpan9 485 . . . . . . . . . . . . . . 15 ((𝑑𝑆𝑓𝑑) → ∀𝑏 ∈ (TC‘{𝑓})𝑏𝑋)
98 sneq 4220 . . . . . . . . . . . . . . . . . 18 (𝑎 = 𝑓 → {𝑎} = {𝑓})
9998fveq2d 6233 . . . . . . . . . . . . . . . . 17 (𝑎 = 𝑓 → (TC‘{𝑎}) = (TC‘{𝑓}))
10099raleqdv 3174 . . . . . . . . . . . . . . . 16 (𝑎 = 𝑓 → (∀𝑏 ∈ (TC‘{𝑎})𝑏𝑋 ↔ ∀𝑏 ∈ (TC‘{𝑓})𝑏𝑋))
101100, 46elrab2 3399 . . . . . . . . . . . . . . 15 (𝑓𝑆 ↔ (𝑓 (𝑅1 “ On) ∧ ∀𝑏 ∈ (TC‘{𝑓})𝑏𝑋))
10288, 97, 101sylanbrc 699 . . . . . . . . . . . . . 14 ((𝑑𝑆𝑓𝑑) → 𝑓𝑆)
103102adantll 750 . . . . . . . . . . . . 13 (((𝑒 ∈ ω ∧ 𝑑𝑆) ∧ 𝑓𝑑) → 𝑓𝑆)
104103adantll 750 . . . . . . . . . . . 12 (((∀𝑑𝑆 dom OrdIso( E , (rank “ ((𝑈𝑑)‘𝑒))) ∈ (𝐻𝑒) ∧ (𝑒 ∈ ω ∧ 𝑑𝑆)) ∧ 𝑓𝑑) → 𝑓𝑆)
105 simpll 805 . . . . . . . . . . . 12 (((∀𝑑𝑆 dom OrdIso( E , (rank “ ((𝑈𝑑)‘𝑒))) ∈ (𝐻𝑒) ∧ (𝑒 ∈ ω ∧ 𝑑𝑆)) ∧ 𝑓𝑑) → ∀𝑑𝑆 dom OrdIso( E , (rank “ ((𝑈𝑑)‘𝑒))) ∈ (𝐻𝑒))
106 fveq2 6229 . . . . . . . . . . . . . . . . . 18 (𝑑 = 𝑓 → (𝑈𝑑) = (𝑈𝑓))
107106fveq1d 6231 . . . . . . . . . . . . . . . . 17 (𝑑 = 𝑓 → ((𝑈𝑑)‘𝑒) = ((𝑈𝑓)‘𝑒))
108107imaeq2d 5501 . . . . . . . . . . . . . . . 16 (𝑑 = 𝑓 → (rank “ ((𝑈𝑑)‘𝑒)) = (rank “ ((𝑈𝑓)‘𝑒)))
109 oieq2 8459 . . . . . . . . . . . . . . . 16 ((rank “ ((𝑈𝑑)‘𝑒)) = (rank “ ((𝑈𝑓)‘𝑒)) → OrdIso( E , (rank “ ((𝑈𝑑)‘𝑒))) = OrdIso( E , (rank “ ((𝑈𝑓)‘𝑒))))
110108, 109syl 17 . . . . . . . . . . . . . . 15 (𝑑 = 𝑓 → OrdIso( E , (rank “ ((𝑈𝑑)‘𝑒))) = OrdIso( E , (rank “ ((𝑈𝑓)‘𝑒))))
111110dmeqd 5358 . . . . . . . . . . . . . 14 (𝑑 = 𝑓 → dom OrdIso( E , (rank “ ((𝑈𝑑)‘𝑒))) = dom OrdIso( E , (rank “ ((𝑈𝑓)‘𝑒))))
112111eleq1d 2715 . . . . . . . . . . . . 13 (𝑑 = 𝑓 → (dom OrdIso( E , (rank “ ((𝑈𝑑)‘𝑒))) ∈ (𝐻𝑒) ↔ dom OrdIso( E , (rank “ ((𝑈𝑓)‘𝑒))) ∈ (𝐻𝑒)))
113112rspcv 3336 . . . . . . . . . . . 12 (𝑓𝑆 → (∀𝑑𝑆 dom OrdIso( E , (rank “ ((𝑈𝑑)‘𝑒))) ∈ (𝐻𝑒) → dom OrdIso( E , (rank “ ((𝑈𝑓)‘𝑒))) ∈ (𝐻𝑒)))
114104, 105, 113sylc 65 . . . . . . . . . . 11 (((∀𝑑𝑆 dom OrdIso( E , (rank “ ((𝑈𝑑)‘𝑒))) ∈ (𝐻𝑒) ∧ (𝑒 ∈ ω ∧ 𝑑𝑆)) ∧ 𝑓𝑑) → dom OrdIso( E , (rank “ ((𝑈𝑓)‘𝑒))) ∈ (𝐻𝑒))
115 imassrn 5512 . . . . . . . . . . . . 13 (rank “ ((𝑈𝑓)‘𝑒)) ⊆ ran rank
116115, 32sstri 3645 . . . . . . . . . . . 12 (rank “ ((𝑈𝑓)‘𝑒)) ⊆ On
117 fvex 6239 . . . . . . . . . . . . . . 15 ((𝑈𝑓)‘𝑒) ∈ V
118117funimaex 6014 . . . . . . . . . . . . . 14 (Fun rank → (rank “ ((𝑈𝑓)‘𝑒)) ∈ V)
11940, 118ax-mp 5 . . . . . . . . . . . . 13 (rank “ ((𝑈𝑓)‘𝑒)) ∈ V
120119elpw 4197 . . . . . . . . . . . 12 ((rank “ ((𝑈𝑓)‘𝑒)) ∈ 𝒫 On ↔ (rank “ ((𝑈𝑓)‘𝑒)) ⊆ On)
121116, 120mpbir 221 . . . . . . . . . . 11 (rank “ ((𝑈𝑓)‘𝑒)) ∈ 𝒫 On
122114, 121jctil 559 . . . . . . . . . 10 (((∀𝑑𝑆 dom OrdIso( E , (rank “ ((𝑈𝑑)‘𝑒))) ∈ (𝐻𝑒) ∧ (𝑒 ∈ ω ∧ 𝑑𝑆)) ∧ 𝑓𝑑) → ((rank “ ((𝑈𝑓)‘𝑒)) ∈ 𝒫 On ∧ dom OrdIso( E , (rank “ ((𝑈𝑓)‘𝑒))) ∈ (𝐻𝑒)))
123122ralrimiva 2995 . . . . . . . . 9 ((∀𝑑𝑆 dom OrdIso( E , (rank “ ((𝑈𝑑)‘𝑒))) ∈ (𝐻𝑒) ∧ (𝑒 ∈ ω ∧ 𝑑𝑆)) → ∀𝑓𝑑 ((rank “ ((𝑈𝑓)‘𝑒)) ∈ 𝒫 On ∧ dom OrdIso( E , (rank “ ((𝑈𝑓)‘𝑒))) ∈ (𝐻𝑒)))
124 eqid 2651 . . . . . . . . . 10 OrdIso( E , (rank “ ((𝑈𝑓)‘𝑒))) = OrdIso( E , (rank “ ((𝑈𝑓)‘𝑒)))
125 eqid 2651 . . . . . . . . . 10 OrdIso( E , 𝑓𝑑 (rank “ ((𝑈𝑓)‘𝑒))) = OrdIso( E , 𝑓𝑑 (rank “ ((𝑈𝑓)‘𝑒)))
126124, 125hsmexlem3 9288 . . . . . . . . 9 (((𝑑* 𝑋 ∧ (𝐻𝑒) ∈ On) ∧ ∀𝑓𝑑 ((rank “ ((𝑈𝑓)‘𝑒)) ∈ 𝒫 On ∧ dom OrdIso( E , (rank “ ((𝑈𝑓)‘𝑒))) ∈ (𝐻𝑒))) → dom OrdIso( E , 𝑓𝑑 (rank “ ((𝑈𝑓)‘𝑒))) ∈ (har‘𝒫 (𝑋 × (𝐻𝑒))))
12780, 82, 123, 126syl21anc 1365 . . . . . . . 8 ((∀𝑑𝑆 dom OrdIso( E , (rank “ ((𝑈𝑑)‘𝑒))) ∈ (𝐻𝑒) ∧ (𝑒 ∈ ω ∧ 𝑑𝑆)) → dom OrdIso( E , 𝑓𝑑 (rank “ ((𝑈𝑓)‘𝑒))) ∈ (har‘𝒫 (𝑋 × (𝐻𝑒))))
12879, 127syl5eqel 2734 . . . . . . 7 ((∀𝑑𝑆 dom OrdIso( E , (rank “ ((𝑈𝑑)‘𝑒))) ∈ (𝐻𝑒) ∧ (𝑒 ∈ ω ∧ 𝑑𝑆)) → dom OrdIso( E , (rank “ ((𝑈𝑑)‘suc 𝑒))) ∈ (har‘𝒫 (𝑋 × (𝐻𝑒))))
12965hsmexlem8 9284 . . . . . . . 8 (𝑒 ∈ ω → (𝐻‘suc 𝑒) = (har‘𝒫 (𝑋 × (𝐻𝑒))))
130129ad2antrl 764 . . . . . . 7 ((∀𝑑𝑆 dom OrdIso( E , (rank “ ((𝑈𝑑)‘𝑒))) ∈ (𝐻𝑒) ∧ (𝑒 ∈ ω ∧ 𝑑𝑆)) → (𝐻‘suc 𝑒) = (har‘𝒫 (𝑋 × (𝐻𝑒))))
131128, 130eleqtrrd 2733 . . . . . 6 ((∀𝑑𝑆 dom OrdIso( E , (rank “ ((𝑈𝑑)‘𝑒))) ∈ (𝐻𝑒) ∧ (𝑒 ∈ ω ∧ 𝑑𝑆)) → dom OrdIso( E , (rank “ ((𝑈𝑑)‘suc 𝑒))) ∈ (𝐻‘suc 𝑒))
132131expr 642 . . . . 5 ((∀𝑑𝑆 dom OrdIso( E , (rank “ ((𝑈𝑑)‘𝑒))) ∈ (𝐻𝑒) ∧ 𝑒 ∈ ω) → (𝑑𝑆 → dom OrdIso( E , (rank “ ((𝑈𝑑)‘suc 𝑒))) ∈ (𝐻‘suc 𝑒)))
13371, 132ralrimi 2986 . . . 4 ((∀𝑑𝑆 dom OrdIso( E , (rank “ ((𝑈𝑑)‘𝑒))) ∈ (𝐻𝑒) ∧ 𝑒 ∈ ω) → ∀𝑑𝑆 dom OrdIso( E , (rank “ ((𝑈𝑑)‘suc 𝑒))) ∈ (𝐻‘suc 𝑒))
134133expcom 450 . . 3 (𝑒 ∈ ω → (∀𝑑𝑆 dom OrdIso( E , (rank “ ((𝑈𝑑)‘𝑒))) ∈ (𝐻𝑒) → ∀𝑑𝑆 dom OrdIso( E , (rank “ ((𝑈𝑑)‘suc 𝑒))) ∈ (𝐻‘suc 𝑒)))
13510, 19, 28, 68, 134finds1 7137 . 2 (𝑐 ∈ ω → ∀𝑑𝑆 dom 𝑂 ∈ (𝐻𝑐))
136135r19.21bi 2961 1 ((𝑐 ∈ ω ∧ 𝑑𝑆) → dom 𝑂 ∈ (𝐻𝑐))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1523  wcel 2030  wral 2941  {crab 2945  Vcvv 3231  wss 3607  c0 3948  𝒫 cpw 4191  {csn 4210   cuni 4468   ciun 4552   class class class wbr 4685  cmpt 4762   E cep 5057   × cxp 5141  dom cdm 5143  ran crn 5144  cres 5145  cima 5146  Oncon0 5761  suc csuc 5763  Fun wfun 5920  wf 5922  cfv 5926  ωcom 7107  reccrdg 7550  cdom 7995  OrdIsocoi 8455  harchar 8502  * cwdom 8503  TCctc 8650  𝑅1cr1 8663  rankcrnk 8664
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-inf2 8576
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-se 5103  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-isom 5935  df-riota 6651  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-smo 7488  df-recs 7513  df-rdg 7551  df-er 7787  df-en 7998  df-dom 7999  df-sdom 8000  df-oi 8456  df-har 8504  df-wdom 8505  df-tc 8651  df-r1 8665  df-rank 8666
This theorem is referenced by:  hsmexlem5  9290
  Copyright terms: Public domain W3C validator